TPTP Problem File: SEU579^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU579^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Relations on Sets - Subsets
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.subset A B -> subset (powerset A) (powerset B))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC081l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0, 0.00 v3.7.0
% Syntax : Number of formulae : 12 ( 4 unt; 7 typ; 4 def)
% Number of atoms : 26 ( 4 equ; 0 cnn)
% Maximal formula atoms : 6 ( 5 avg)
% Number of connectives : 45 ( 0 ~; 0 |; 0 &; 32 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 14 ( 0 ^; 14 !; 0 ?; 14 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=156
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(powerset_type,type,
powerset: $i > $i ).
thf(powersetI_type,type,
powersetI: $o ).
thf(powersetI,definition,
( powersetI
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ B )
=> ( in @ Xx @ A ) )
=> ( in @ B @ ( powerset @ A ) ) ) ) ) ).
thf(powersetE_type,type,
powersetE: $o ).
thf(powersetE,definition,
( powersetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ B @ ( powerset @ A ) )
=> ( ( in @ Xx @ B )
=> ( in @ Xx @ A ) ) ) ) ) ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(subsetI2_type,type,
subsetI2: $o ).
thf(subsetI2,definition,
( subsetI2
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( ( in @ Xx @ A )
=> ( in @ Xx @ B ) )
=> ( subset @ A @ B ) ) ) ) ).
thf(subsetE_type,type,
subsetE: $o ).
thf(subsetE,definition,
( subsetE
= ( ! [A: $i,B: $i,Xx: $i] :
( ( subset @ A @ B )
=> ( ( in @ Xx @ A )
=> ( in @ Xx @ B ) ) ) ) ) ).
thf(powersetsubset,conjecture,
( powersetI
=> ( powersetE
=> ( subsetI2
=> ( subsetE
=> ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( subset @ ( powerset @ A ) @ ( powerset @ B ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------