TPTP Problem File: SEU575^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU575^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Relations on Sets - Subsets
% Version : Especial > Reduced > Especial.
% English : (! A:i.subset A emptyset -> A = emptyset)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC077l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 7 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 12 ( 4 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 13 ( 0 ~; 0 |; 0 &; 8 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 4 ( 0 ^; 4 !; 0 ?; 4 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=479
%------------------------------------------------------------------------------
thf(emptyset_type,type,
emptyset: $i ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(emptysetsubset_type,type,
emptysetsubset: $o ).
thf(emptysetsubset,definition,
( emptysetsubset
= ( ! [A: $i] : ( subset @ emptyset @ A ) ) ) ).
thf(setextsub_type,type,
setextsub: $o ).
thf(setextsub,definition,
( setextsub
= ( ! [A: $i,B: $i] :
( ( subset @ A @ B )
=> ( ( subset @ B @ A )
=> ( A = B ) ) ) ) ) ).
thf(subsetemptysetimpeq,conjecture,
( emptysetsubset
=> ( setextsub
=> ! [A: $i] :
( ( subset @ A @ emptyset )
=> ( A = emptyset ) ) ) ) ).
%------------------------------------------------------------------------------