TPTP Problem File: SEU574^2.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU574^2 : TPTP v9.0.0. Released v3.7.0.
% Domain   : Set Theory
% Problem  : Preliminary Notions - Relations on Sets - Subsets
% Version  : Especial > Reduced > Especial.
% English  : (! A:i.! B:i.subset A B -> subset B A -> A = B)

% Refs     : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source   : [Bro08]
% Names    : ZFC076l [Bro08]

% Status   : Theorem
% Rating   : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax   : Number of formulae    :    7 (   2 unt;   4 typ;   2 def)
%            Number of atoms       :   17 (   4 equ;   0 cnn)
%            Maximal formula atoms :    5 (   5 avg)
%            Number of connectives :   28 (   0   ~;   0   |;   0   &;  18   @)
%                                         (   0 <=>;  10  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   4 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :    4 (   4   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    5 (   4 usr;   2 con; 0-2 aty)
%            Number of variables   :    9 (   0   ^;   9   !;   0   ?;   9   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : http://mathgate.info/detsetitem.php?id=154
%------------------------------------------------------------------------------
thf(in_type,type,
    in: $i > $i > $o ).

thf(setext_type,type,
    setext: $o ).

thf(setext,definition,
    ( setext
    = ( ! [A: $i,B: $i] :
          ( ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ( in @ Xx @ B ) )
         => ( ! [Xx: $i] :
                ( ( in @ Xx @ B )
               => ( in @ Xx @ A ) )
           => ( A = B ) ) ) ) ) ).

thf(subset_type,type,
    subset: $i > $i > $o ).

thf(subsetE_type,type,
    subsetE: $o ).

thf(subsetE,definition,
    ( subsetE
    = ( ! [A: $i,B: $i,Xx: $i] :
          ( ( subset @ A @ B )
         => ( ( in @ Xx @ A )
           => ( in @ Xx @ B ) ) ) ) ) ).

thf(setextsub,conjecture,
    ( setext
   => ( subsetE
     => ! [A: $i,B: $i] :
          ( ( subset @ A @ B )
         => ( ( subset @ B @ A )
           => ( A = B ) ) ) ) ) ).

%------------------------------------------------------------------------------