TPTP Problem File: SEU568^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU568^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Relations on Sets - Subsets
% Version : Especial > Reduced > Especial.
% English : (! A:i.! B:i.! x:i.in x A -> ~(in x B) -> ~(A = B))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC070l [Bro08]
% Status : Theorem
% Rating : 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 7 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 14 ( 4 equ; 0 cnn)
% Maximal formula atoms : 5 ( 4 avg)
% Number of connectives : 25 ( 6 ~; 0 |; 0 &; 12 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 8 ( 0 ^; 8 !; 0 ?; 8 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=439
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(subset_type,type,
subset: $i > $i > $o ).
thf(notsubsetI_type,type,
notsubsetI: $o ).
thf(notsubsetI,definition,
( notsubsetI
= ( ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ~ ( subset @ A @ B ) ) ) ) ) ).
thf(notequalI1_type,type,
notequalI1: $o ).
thf(notequalI1,definition,
( notequalI1
= ( ! [A: $i,B: $i] :
( ~ ( subset @ A @ B )
=> ( A != B ) ) ) ) ).
thf(notequalI2,conjecture,
( notsubsetI
=> ( notequalI1
=> ! [A: $i,B: $i,Xx: $i] :
( ( in @ Xx @ A )
=> ( ~ ( in @ Xx @ B )
=> ( A != B ) ) ) ) ) ).
%------------------------------------------------------------------------------