TPTP Problem File: SEU545^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU545^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Equivalence Laws
% Version : Especial > Reduced > Especial.
% English : (! phi:i>o.(? x:i.phi x) -> (! x:i.! y:i.phi x -> phi y ->
% x = y) -> exu (^ x:i.phi x))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC047l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 5 ( 2 unt; 2 typ; 2 def)
% Number of atoms : 10 ( 5 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 21 ( 0 ~; 0 |; 2 &; 11 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 12 ( 3 ^; 6 !; 3 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=410
%------------------------------------------------------------------------------
thf(exu_type,type,
exu: ( $i > $o ) > $o ).
thf(exu,definition,
( exu
= ( ^ [Xphi: $i > $o] :
? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) ) ) ) ).
thf(exuI1_type,type,
exuI1: $o ).
thf(exuI1,definition,
( exuI1
= ( ! [Xphi: $i > $o] :
( ? [Xx: $i] :
( ( Xphi @ Xx )
& ! [Xy: $i] :
( ( Xphi @ Xy )
=> ( Xx = Xy ) ) )
=> ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
thf(exuI3,conjecture,
( exuI1
=> ! [Xphi: $i > $o] :
( ? [Xx: $i] : ( Xphi @ Xx )
=> ( ! [Xx: $i,Xy: $i] :
( ( Xphi @ Xx )
=> ( ( Xphi @ Xy )
=> ( Xx = Xy ) ) )
=> ( exu
@ ^ [Xx: $i] : ( Xphi @ Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------