TPTP Problem File: SEU541^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU541^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Dependent Connective Laws
% Version : Especial > Reduced > Especial.
% English : (! phi:o.phi -> set2prop (prop2set phi))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC043l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 8 ( 2 unt; 5 typ; 2 def)
% Number of atoms : 8 ( 2 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 10 ( 0 ~; 0 |; 0 &; 7 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 3 ( 1 ^; 2 !; 0 ?; 3 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=456
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(prop2set_type,type,
prop2set: $o > $i ).
thf(prop2setI_type,type,
prop2setI: $o ).
thf(prop2setI,definition,
( prop2setI
= ( ! [Xphi: $o] :
( Xphi
=> ( in @ emptyset @ ( prop2set @ Xphi ) ) ) ) ) ).
thf(set2prop_type,type,
set2prop: $i > $o ).
thf(set2prop,definition,
( set2prop
= ( ^ [A: $i] : ( in @ emptyset @ A ) ) ) ).
thf(prop2set2propI,conjecture,
( prop2setI
=> ! [Xphi: $o] :
( Xphi
=> ( set2prop @ ( prop2set @ Xphi ) ) ) ) ).
%------------------------------------------------------------------------------