TPTP Problem File: SEU531_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU531_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Equality Laws
% Version : Especial * Reduced > Especial.
% English : (! x:i.! y:i.! z:i.in z (setadjoin x (setadjoin y emptyset)) ->
% z = x | z = y)
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 8 ( 2 unt; 5 typ; 2 def)
% Number of atoms : 14 ( 6 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 10 ( 0 ~; 1 |; 0 &)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of FOOLs : 7 ( 4 fml; 3 var)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 2 >; 2 *; 0 +; 0 <<)
% Number of predicates : 4 ( 3 usr; 2 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 9 ( 9 !; 0 ?; 9 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(in_type,type,
in: ( $i * $i ) > $o ).
tff(emptyset_type,type,
emptyset: $i ).
tff(setadjoin_type,type,
setadjoin: ( $i * $i ) > $i ).
tff(setadjoinE_type,type,
setadjoinE: $o ).
tff(setadjoinE,definition,
( setadjoinE
= ( ! [Xx: $i,A: $i,Xy: $i] :
( in(Xy,setadjoin(Xx,A))
=> ! [Xphi: $o] :
( ( ( Xy = Xx )
=> (Xphi) )
=> ( ( in(Xy,A)
=> (Xphi) )
=> (Xphi) ) ) ) ) ) ).
tff(uniqinunit_type,type,
uniqinunit: $o ).
tff(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( in(Xx,setadjoin(Xy,emptyset))
=> ( Xx = Xy ) ) ) ) ).
tff(upairsetE,conjecture,
( setadjoinE
=> ( uniqinunit
=> ! [Xx: $i,Xy: $i,Xz: $i] :
( in(Xz,setadjoin(Xx,setadjoin(Xy,emptyset)))
=> ( ( Xz = Xx )
| ( Xz = Xy ) ) ) ) ) ).
%------------------------------------------------------------------------------