TPTP Problem File: SEU531^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU531^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Equality Laws
% Version : Especial > Reduced > Especial.
% English : (! x:i.! y:i.! z:i.in z (setadjoin x (setadjoin y emptyset)) ->
% z = x | z = y)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC033l [Bro08]
% : ZFC126l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 8 ( 2 unt; 5 typ; 2 def)
% Number of atoms : 14 ( 6 equ; 0 cnn)
% Maximal formula atoms : 5 ( 4 avg)
% Number of connectives : 26 ( 0 ~; 1 |; 0 &; 16 @)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 9 ( 0 ^; 9 !; 0 ?; 9 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=504
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(setadjoin_type,type,
setadjoin: $i > $i > $i ).
thf(setadjoinE_type,type,
setadjoinE: $o ).
thf(setadjoinE,definition,
( setadjoinE
= ( ! [Xx: $i,A: $i,Xy: $i] :
( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
=> ! [Xphi: $o] :
( ( ( Xy = Xx )
=> Xphi )
=> ( ( ( in @ Xy @ A )
=> Xphi )
=> Xphi ) ) ) ) ) ).
thf(uniqinunit_type,type,
uniqinunit: $o ).
thf(uniqinunit,definition,
( uniqinunit
= ( ! [Xx: $i,Xy: $i] :
( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
=> ( Xx = Xy ) ) ) ) ).
thf(upairsetE,conjecture,
( setadjoinE
=> ( uniqinunit
=> ! [Xx: $i,Xy: $i,Xz: $i] :
( ( in @ Xz @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) )
=> ( ( Xz = Xx )
| ( Xz = Xy ) ) ) ) ) ).
%------------------------------------------------------------------------------