TPTP Problem File: SEU519_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU519_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Power Sets and Unions
% Version : Especial * Reduced > Especial.
% English : (! A:i.in emptyset (powerset A))
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 8 ( 2 unt; 5 typ; 2 def)
% Number of atoms : 11 ( 2 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 5 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 5 ( 4 fml; 1 var)
% Number of types : 2 ( 0 usr)
% Number of type conns : 3 ( 2 >; 1 *; 0 +; 0 <<)
% Number of predicates : 4 ( 3 usr; 2 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 6 ( 6 !; 0 ?; 6 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(in_type,type,
in: ( $i * $i ) > $o ).
tff(emptyset_type,type,
emptyset: $i ).
tff(powerset_type,type,
powerset: $i > $i ).
tff(emptysetE_type,type,
emptysetE: $o ).
tff(emptysetE,definition,
( emptysetE
= ( ! [Xx: $i] :
( in(Xx,emptyset)
=> ! [Xphi: $o] : (Xphi) ) ) ) ).
tff(powersetI_type,type,
powersetI: $o ).
tff(powersetI,definition,
( powersetI
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( in(Xx,B)
=> in(Xx,A) )
=> in(B,powerset(A)) ) ) ) ).
tff(emptyinPowerset,conjecture,
( emptysetE
=> ( powersetI
=> ! [A: $i] : in(emptyset,powerset(A)) ) ) ).
%------------------------------------------------------------------------------