TPTP Problem File: SEU515_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU515_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Adjoining Elements to Sets
% Version : Especial * Reduced > Especial.
% English : (! x:i.! A:i.! y:i.in y (setadjoin x A) -> (! phi:o.(y = x -> phi)
% -> (in y A -> phi) -> phi))
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 5 ( 1 unt; 3 typ; 1 def)
% Number of atoms : 9 ( 3 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 8 ( 0 ~; 1 |; 0 &)
% ( 1 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of FOOLs : 5 ( 2 fml; 3 var)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 2 >; 2 *; 0 +; 0 <<)
% Number of predicates : 3 ( 2 usr; 1 prp; 0-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 7 ( 7 !; 0 ?; 7 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(in_type,type,
in: ( $i * $i ) > $o ).
tff(setadjoin_type,type,
setadjoin: ( $i * $i ) > $i ).
tff(setadjoinAx_type,type,
setadjoinAx: $o ).
tff(setadjoinAx,definition,
( setadjoinAx
= ( ! [Xx: $i,A: $i,Xy: $i] :
( in(Xy,setadjoin(Xx,A))
<=> ( ( Xy = Xx )
| in(Xy,A) ) ) ) ) ).
tff(setadjoinE,conjecture,
( setadjoinAx
=> ! [Xx: $i,A: $i,Xy: $i] :
( in(Xy,setadjoin(Xx,A))
=> ! [Xphi: $o] :
( ( ( Xy = Xx )
=> (Xphi) )
=> ( ( in(Xy,A)
=> (Xphi) )
=> (Xphi) ) ) ) ) ).
%------------------------------------------------------------------------------