TPTP Problem File: SEU511^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU511^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Basic Laws of Logic
% Version : Especial > Reduced > Especial.
% English : (! A:i.(? x:i.in x A) -> nonempty A)
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC013l [Bro08]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 7 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 9 ( 3 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 9 ( 1 ~; 0 |; 0 &; 5 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 5 ( 1 ^; 3 !; 1 ?; 5 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=431
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(emptyset_type,type,
emptyset: $i ).
thf(emptysetE_type,type,
emptysetE: $o ).
thf(emptysetE,definition,
( emptysetE
= ( ! [Xx: $i] :
( ( in @ Xx @ emptyset )
=> ! [Xphi: $o] : Xphi ) ) ) ).
thf(nonempty_type,type,
nonempty: $i > $o ).
thf(nonempty,definition,
( nonempty
= ( ^ [Xx: $i] : ( Xx != emptyset ) ) ) ).
thf(nonemptyI1,conjecture,
( emptysetE
=> ! [A: $i] :
( ? [Xx: $i] : ( in @ Xx @ A )
=> ( nonempty @ A ) ) ) ).
%------------------------------------------------------------------------------