TPTP Problem File: SEU508^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU508^2 : TPTP v9.0.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Basic Laws of Logic
% Version : Especial > Reduced > Especial.
% English : (! A:i.! phi:i>o.! x:i.in x A -> (in x (dsetconstr A
% (^ y:i.phi y)) <-> phi x))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC010l [Bro08]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.23 v8.1.0, 0.09 v7.5.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.00 v6.0.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.40 v4.1.0, 0.33 v3.7.0
% Syntax : Number of formulae : 7 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 11 ( 2 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 29 ( 0 ~; 0 |; 0 &; 22 @)
% ( 1 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 12 ( 3 ^; 9 !; 0 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=459
%------------------------------------------------------------------------------
thf(in_type,type,
in: $i > $i > $o ).
thf(dsetconstr_type,type,
dsetconstr: $i > ( $i > $o ) > $i ).
thf(dsetconstrI_type,type,
dsetconstrI: $o ).
thf(dsetconstrI,definition,
( dsetconstrI
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( Xphi @ Xx )
=> ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) ) ) ) ) ) ).
thf(dsetconstrER_type,type,
dsetconstrER: $o ).
thf(dsetconstrER,definition,
( dsetconstrER
= ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
=> ( Xphi @ Xx ) ) ) ) ).
thf(setbeta,conjecture,
( dsetconstrI
=> ( dsetconstrER
=> ! [A: $i,Xphi: $i > $o,Xx: $i] :
( ( in @ Xx @ A )
=> ( ( in @ Xx
@ ( dsetconstr @ A
@ ^ [Xy: $i] : ( Xphi @ Xy ) ) )
<=> ( Xphi @ Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------