TPTP Problem File: SEU506_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU506_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Basic Laws of Logic
% Version : Especial * Reduced > Especial.
% English : (! A:i.(! x:i.~(in x A)) -> A = emptyset)
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 7 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 14 ( 4 equ)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 9 ( 1 ~; 0 |; 0 &)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of FOOLs : 5 ( 4 fml; 1 var)
% Number of types : 2 ( 0 usr)
% Number of type conns : 2 ( 1 >; 1 *; 0 +; 0 <<)
% Number of predicates : 4 ( 3 usr; 2 prp; 0-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 8 ( 8 !; 0 ?; 8 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(in_type,type,
in: ( $i * $i ) > $o ).
tff(emptyset_type,type,
emptyset: $i ).
tff(emptysetE_type,type,
emptysetE: $o ).
tff(emptysetE,definition,
( emptysetE
= ( ! [Xx: $i] :
( in(Xx,emptyset)
=> ! [Xphi: $o] : (Xphi) ) ) ) ).
tff(setext_type,type,
setext: $o ).
tff(setext,definition,
( setext
= ( ! [A: $i,B: $i] :
( ! [Xx: $i] :
( in(Xx,A)
=> in(Xx,B) )
=> ( ! [Xx: $i] :
( in(Xx,B)
=> in(Xx,A) )
=> ( A = B ) ) ) ) ) ).
tff(emptyI,conjecture,
( emptysetE
=> ( setext
=> ! [A: $i] :
( ! [Xx: $i] : ~ in(Xx,A)
=> ( A = emptyset ) ) ) ) ).
%------------------------------------------------------------------------------