TPTP Problem File: SEU506^2.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU506^2 : TPTP v9.0.0. Released v3.7.0.
% Domain   : Set Theory
% Problem  : Preliminary Notions - Basic Laws of Logic
% Version  : Especial > Reduced > Especial.
% English  : (! A:i.(! x:i.~(in x A)) -> A = emptyset)

% Refs     : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source   : [Bro08]
% Names    : ZFC008l [Bro08]
%          : ZFC009l [Bro08]

% Status   : Theorem
% Rating   : 0.00 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v3.7.0
% Syntax   : Number of formulae    :    7 (   2 unt;   4 typ;   2 def)
%            Number of atoms       :   14 (   4 equ;   0 cnn)
%            Maximal formula atoms :    4 (   4 avg)
%            Number of connectives :   21 (   1   ~;   0   |;   0   &;  12   @)
%                                         (   0 <=>;   8  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   4 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :    2 (   2   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    5 (   4 usr;   3 con; 0-2 aty)
%            Number of variables   :    8 (   0   ^;   8   !;   0   ?;   8   :)
% SPC      : TH0_THM_EQU_NAR

% Comments : http://mathgate.info/detsetitem.php?id=386
%          : http://mathgate.info/detsetitem.php?id=480
%------------------------------------------------------------------------------
thf(in_type,type,
    in: $i > $i > $o ).

thf(emptyset_type,type,
    emptyset: $i ).

thf(emptysetE_type,type,
    emptysetE: $o ).

thf(emptysetE,definition,
    ( emptysetE
    = ( ! [Xx: $i] :
          ( ( in @ Xx @ emptyset )
         => ! [Xphi: $o] : Xphi ) ) ) ).

thf(setext_type,type,
    setext: $o ).

thf(setext,definition,
    ( setext
    = ( ! [A: $i,B: $i] :
          ( ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ( in @ Xx @ B ) )
         => ( ! [Xx: $i] :
                ( ( in @ Xx @ B )
               => ( in @ Xx @ A ) )
           => ( A = B ) ) ) ) ) ).

thf(emptyI,conjecture,
    ( emptysetE
   => ( setext
     => ! [A: $i] :
          ( ! [Xx: $i] :
              ~ ( in @ Xx @ A )
         => ( A = emptyset ) ) ) ) ).

%------------------------------------------------------------------------------