TPTP Problem File: SEU502_8.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU502_8 : TPTP v9.0.0. Released v8.0.0.
% Domain : Set Theory
% Problem : Preliminary Notions - Basic Laws of Logic
% Version : Especial * Reduced > Especial.
% English : (! x:i.in x emptyset -> false)
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.00 v8.1.0
% Syntax : Number of formulae : 5 ( 1 unt; 3 typ; 1 def)
% Number of atoms : 6 ( 1 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of FOOLs : 3 ( 2 fml; 1 var)
% Number of types : 2 ( 0 usr)
% Number of type conns : 2 ( 1 >; 1 *; 0 +; 0 <<)
% Number of predicates : 4 ( 2 usr; 2 prp; 0-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 3 ( 3 !; 0 ?; 3 :)
% SPC : TX0_THM_EQU_NAR
% Comments : Translated to TXF from the THF version.
%------------------------------------------------------------------------------
tff(in_type,type,
in: ( $i * $i ) > $o ).
tff(emptyset_type,type,
emptyset: $i ).
tff(emptysetE_type,type,
emptysetE: $o ).
tff(emptysetE,definition,
( emptysetE
= ( ! [Xx: $i] :
( in(Xx,emptyset)
=> ! [Xphi: $o] : (Xphi) ) ) ) ).
tff(emptysetimpfalse,conjecture,
( emptysetE
=> ! [Xx: $i] :
( in(Xx,emptyset)
=> $false ) ) ).
%------------------------------------------------------------------------------