TPTP Problem File: SEU487^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU487^1 : TPTP v9.0.0. Bugfixed v3.7.0.
% Domain : Set Theory (Binary relations)
% Problem : Local confluence does NOT imply confluence
% Version : [Nei08] axioms.
% English :
% Refs : [BN99] Baader & Nipkow (1999), Term Rewriting and All That
% : [Nei08] Neis (2008), Email to Geoff Sutcliffe
% Source : [Nei08]
% Names :
% Status : Theorem
% Rating : 1.00 v3.7.0
% Syntax : Number of formulae : 60 ( 29 unt; 29 typ; 29 def)
% Number of atoms : 99 ( 39 equ; 0 cnn)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 173 ( 11 ~; 4 |; 17 &; 124 @)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 199 ( 199 >; 0 *; 0 +; 0 <<)
% Number of symbols : 32 ( 31 usr; 2 con; 0-3 aty)
% Number of variables : 91 ( 43 ^; 39 !; 9 ?; 91 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Some proofs can be found in chapter 2 of [BN99]
% Bugfixes : v3.7.0 - Added extra hypothesis four_individuals
%------------------------------------------------------------------------------
%----Include axioms of binary relations
include('Axioms/SET009^0.ax').
%------------------------------------------------------------------------------
thf(four_individuals,hypothesis,
? [W: $i,X: $i,Y: $i,Z: $i] :
( ( W != X )
& ( W != Y )
& ( W != Z )
& ( X != Y )
& ( X != Z )
& ( Y != Z ) ) ).
thf(local_confluence_does_not_imply_confluence,conjecture,
~ ! [R: $i > $i > $o] :
( ( lconfl @ R )
=> ( confl @ R ) ) ).
%------------------------------------------------------------------------------