TPTP Problem File: SEU485^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU485^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory (Binary relations)
% Problem : In a confluent relation every element has at most one normal form
% Version : [Nei08] axioms.
% English :
% Refs : [BN99] Baader & Nipkow (1999), Term Rewriting and All That
% : [Nei08] Neis (2008), Email to Geoff Sutcliffe
% Source : [Nei08]
% Names :
% Status : Theorem
% Rating : 1.00 v3.7.0
% Syntax : Number of formulae : 59 ( 29 unt; 29 typ; 29 def)
% Number of atoms : 95 ( 34 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 168 ( 4 ~; 4 |; 13 &; 129 @)
% ( 0 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 199 ( 199 >; 0 *; 0 +; 0 <<)
% Number of symbols : 32 ( 31 usr; 2 con; 0-3 aty)
% Number of variables : 90 ( 43 ^; 42 !; 5 ?; 90 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Some proofs can be found in chapter 2 of [BN99]
%------------------------------------------------------------------------------
%----Include axioms of binary relations
include('Axioms/SET009^0.ax').
%------------------------------------------------------------------------------
thf(confluent_implies_at_most_one_nf,conjecture,
! [R: $i > $i > $o] :
( ( confl @ R )
=> ! [X: $i,Y: $i,Z: $i] :
( ( ( nfof @ R @ Y @ X )
& ( nfof @ R @ Z @ X ) )
=> ( Y = Z ) ) ) ).
%------------------------------------------------------------------------------