TPTP Problem File: SEU482^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU482^1 : TPTP v9.1.0. Bugfixed v3.7.0.
% Domain : Set Theory (Binary relations)
% Problem : A normalizing relation is not necessarily terminating
% Version : [Nei08] axioms.
% English :
% Refs : [BN99] Baader & Nipkow (1999), Term Rewriting and All That
% : [Nei08] Neis (2008), Email to Geoff Sutcliffe
% Source : [Nei08]
% Names :
% Status : Theorem
% Rating : 0.78 v9.1.0, 0.75 v9.0.0, 1.00 v5.5.0, 0.83 v5.4.0, 0.80 v5.3.0, 1.00 v5.2.0, 0.80 v4.1.0, 0.67 v4.0.0, 1.00 v3.7.0
% Syntax : Number of formulae : 60 ( 30 unt; 29 typ; 29 def)
% Number of atoms : 94 ( 34 equ; 0 cnn)
% Maximal formula atoms : 2 ( 3 avg)
% Number of connectives : 163 ( 6 ~; 4 |; 12 &; 124 @)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 199 ( 199 >; 0 *; 0 +; 0 <<)
% Number of symbols : 32 ( 31 usr; 2 con; 0-3 aty)
% Number of variables : 89 ( 43 ^; 39 !; 7 ?; 89 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Some proofs can be found in chapter 2 of [BN99]
% Bugfixes : v3.7.0 - Added extra hypothesis two_individuals
%------------------------------------------------------------------------------
%----Include axioms of binary relations
include('Axioms/SET009^0.ax').
%------------------------------------------------------------------------------
thf(two_individuals,hypothesis,
? [Y: $i,Z: $i] : ( Y != Z ) ).
thf(normalizing_does_not_imply_terminating,conjecture,
~ ! [R: $i > $i > $o] :
( ( norm @ R )
=> ( term @ R ) ) ).
%------------------------------------------------------------------------------