TPTP Problem File: SEU477^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU477^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory (Binary relations)
% Problem : Another definition of terminating
% Version : [Nei08] axioms.
% English : The definition of terminating is the same as saying there is no
% non-empty subset A in which every element has an R successor
% (in A).
% Refs : [BN99] Baader & Nipkow (1999), Term Rewriting and All That
% : [Nei08] Neis (2008), Email to Geoff Sutcliffe
% Source : [Nei08]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.14 v6.1.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.60 v5.3.0, 0.80 v5.2.0, 0.60 v4.1.0, 0.67 v3.7.0
% Syntax : Number of formulae : 59 ( 30 unt; 29 typ; 29 def)
% Number of atoms : 93 ( 34 equ; 0 cnn)
% Maximal formula atoms : 1 ( 3 avg)
% Number of connectives : 167 ( 5 ~; 4 |; 14 &; 127 @)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 200 ( 200 >; 0 *; 0 +; 0 <<)
% Number of symbols : 31 ( 30 usr; 1 con; 0-3 aty)
% Number of variables : 91 ( 44 ^; 39 !; 8 ?; 91 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Some proofs can be found in chapter 2 of [BN99]
%------------------------------------------------------------------------------
%----Include axioms of binary relations
include('Axioms/SET009^0.ax').
%------------------------------------------------------------------------------
thf(alternative_formulation_of_terminating,conjecture,
( term
= ( ^ [R: $i > $i > $o] :
~ ? [A: $i > $o] :
( ? [X: $i] : ( A @ X )
& ! [X: $i] :
( ( A @ X )
=> ? [Y: $i] :
( ( A @ Y )
& ( R @ X @ Y ) ) ) ) ) ) ).
%------------------------------------------------------------------------------