TPTP Problem File: SEU462^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU462^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory (Binary relations)
% Problem : The transitive closure of a binary relation is transitive, part 2
% Version : [Nei08] axioms.
% English :
% Refs : [BN99] Baader & Nipkow (1999), Term Rewriting and All That
% : [Nei08] Neis (2008), Email to Geoff Sutcliffe
% Source : [Nei08]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.09 v7.5.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.33 v4.0.0, 0.67 v3.7.0
% Syntax : Number of formulae : 59 ( 29 unt; 29 typ; 29 def)
% Number of atoms : 94 ( 33 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 169 ( 4 ~; 4 |; 14 &; 130 @)
% ( 0 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 201 ( 201 >; 0 *; 0 +; 0 <<)
% Number of symbols : 33 ( 32 usr; 3 con; 0-3 aty)
% Number of variables : 90 ( 43 ^; 42 !; 5 ?; 90 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Some proofs can be found in chapter 2 of [BN99]
%------------------------------------------------------------------------------
%----Include axioms of binary relations
include('Axioms/SET009^0.ax').
%------------------------------------------------------------------------------
thf(transitive_closure_is_transitive2,conjecture,
! [R: $i > $i > $o,X: $i,Y: $i,S: $i > $i > $o] :
( ( ( trans @ S )
& ( subrel @ R @ S )
& ( tc @ R @ X @ Y ) )
=> ( S @ X @ Y ) ) ).
%------------------------------------------------------------------------------