TPTP Problem File: SEU452^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU452^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Set Theory (Equivalence relations)
% Problem : Hofman's Marktoberdorf exercise
% Version : Especial.
% English : The equivalence of two characterizations of the smallest
% "quasi-PER" containing a given binary relation R, one the obvious
% inductive characterization.
% Refs :
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 1.00 v3.7.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 2 ( 0 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 31 ( 0 ~; 0 |; 3 &; 20 @)
% ( 3 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 16 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 13 ( 0 ^; 13 !; 0 ?; 13 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : Sent to Chris Benzmueller by John Harrison.
%------------------------------------------------------------------------------
thf(r,type,
r: $i > $i > $o ).
thf(thm,conjecture,
! [A: $i,B: $i] :
( ! [S: $i > $i > $o] :
( ( ! [X: $i,Y: $i] :
( ( r @ X @ Y )
=> ( S @ X @ Y ) )
& ! [W: $i,X: $i,Y: $i,Z: $i] :
( ( ( S @ X @ Y )
& ( S @ Z @ Y )
& ( S @ Z @ W ) )
=> ( S @ X @ W ) ) )
=> ( S @ A @ B ) )
<=> ! [P: $i > $o,Q: $i > $o] :
( ! [X: $i,Y: $i] :
( ( r @ X @ Y )
=> ( ( P @ X )
<=> ( Q @ Y ) ) )
=> ( ( P @ A )
<=> ( Q @ B ) ) ) ) ).
%------------------------------------------------------------------------------