TPTP Problem File: SEU411+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU411+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Problem : The Operation of Addition of Relational Structures T20
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [RG04] Romanowicz & Grabowski (2004), The Operation of Additi
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t20_latsum_1 [Urb08]
% Status : Theorem
% Rating : 0.36 v8.2.0, 0.33 v8.1.0, 0.36 v7.5.0, 0.41 v7.4.0, 0.30 v7.3.0, 0.28 v7.2.0, 0.24 v7.1.0, 0.26 v7.0.0, 0.30 v6.4.0, 0.27 v6.3.0, 0.33 v6.2.0, 0.44 v6.1.0, 0.50 v6.0.0, 0.43 v5.5.0, 0.48 v5.4.0, 0.50 v5.3.0, 0.56 v5.2.0, 0.40 v5.1.0, 0.43 v5.0.0, 0.46 v4.1.0, 0.43 v4.0.1, 0.48 v4.0.0, 0.50 v3.5.0, 0.53 v3.4.0
% Syntax : Number of formulae : 39 ( 16 unt; 0 def)
% Number of atoms : 117 ( 7 equ)
% Maximal formula atoms : 19 ( 3 avg)
% Number of connectives : 100 ( 22 ~; 1 |; 46 &)
% ( 6 <=>; 25 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 18 ( 16 usr; 1 prp; 0-3 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 63 ( 55 !; 8 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t20_latsum_1,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_yellow_0(A)
& v1_lattice3(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_yellow_0(B)
& v1_lattice3(B)
& l1_orders_2(B) )
=> ( ( ~ v1_xboole_0(k3_xboole_0(u1_struct_0(A),u1_struct_0(B)))
& v1_waybel_0(k3_xboole_0(u1_struct_0(A),u1_struct_0(B)),B)
& v12_waybel_0(k3_xboole_0(u1_struct_0(A),u1_struct_0(B)),B)
& m1_subset_1(k3_xboole_0(u1_struct_0(A),u1_struct_0(B)),k1_zfmisc_1(u1_struct_0(B))) )
=> r2_hidden(k3_yellow_0(B),u1_struct_0(A)) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : k3_xboole_0(A,B) = k3_xboole_0(B,A) ).
fof(d19_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v12_waybel_0(B,A)
<=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( ( r2_hidden(C,B)
& r1_orders_2(A,D,C) )
=> r2_hidden(D,B) ) ) ) ) ) ) ).
fof(d1_xboole_0,axiom,
! [A] :
( A = k1_xboole_0
<=> ! [B] : ~ r2_hidden(B,A) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = k3_xboole_0(A,B)
<=> ! [D] :
( r2_hidden(D,C)
<=> ( r2_hidden(D,A)
& r2_hidden(D,B) ) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k3_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> m1_subset_1(k3_yellow_0(A),u1_struct_0(A)) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : l1_orders_2(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : k3_xboole_0(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc9_waybel_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& l1_orders_2(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B)
& v1_waybel_0(B,A)
& v12_waybel_0(B,A) ) ) ).
fof(redefinition_r3_orders_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& l1_orders_2(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> ( r3_orders_2(A,B,C)
<=> r1_orders_2(A,B,C) ) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(reflexivity_r3_orders_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& l1_orders_2(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> r3_orders_2(A,B,B) ) ).
fof(t13_latsum_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( r2_hidden(C,k3_xboole_0(u1_struct_0(A),u1_struct_0(B)))
=> m1_subset_1(C,u1_struct_0(B)) ) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_boole,axiom,
! [A] : k3_xboole_0(A,k1_xboole_0) = k1_xboole_0 ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t44_yellow_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v4_orders_2(A)
& v1_yellow_0(A)
& l1_orders_2(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> r1_orders_2(A,k3_yellow_0(A),B) ) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------