TPTP Problem File: SEU409+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU409+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Problem : The Operation of Addition of Relational Structures T14
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [RG04] Romanowicz & Grabowski (2004), The Operation of Additi
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t14_latsum_1 [Urb08]
% Status : Theorem
% Rating : 1.00 v3.4.0
% Syntax : Number of formulae : 69 ( 25 unt; 0 def)
% Number of atoms : 224 ( 23 equ)
% Maximal formula atoms : 22 ( 3 avg)
% Number of connectives : 187 ( 32 ~; 2 |; 69 &)
% ( 15 <=>; 69 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 20 ( 18 usr; 1 prp; 0-3 aty)
% Number of functors : 12 ( 12 usr; 1 con; 0-6 aty)
% Number of variables : 150 ( 139 !; 11 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t14_latsum_1,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(k1_latsum_1(A,B)))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(k1_latsum_1(A,B)))
=> ( ( r2_hidden(C,u1_struct_0(A))
& r2_hidden(D,u1_struct_0(B))
& r1_latsum_1(A,B) )
=> ( r1_orders_2(k1_latsum_1(A,B),C,D)
<=> ? [E] :
( m1_subset_1(E,u1_struct_0(k1_latsum_1(A,B)))
& r2_hidden(E,k3_xboole_0(u1_struct_0(A),u1_struct_0(B)))
& r1_orders_2(k1_latsum_1(A,B),C,E)
& r1_orders_2(k1_latsum_1(A,B),E,D) ) ) ) ) ) ) ) ).
fof(abstractness_v1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_orders_2(A)
=> A = g1_orders_2(u1_struct_0(A),u1_orders_2(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : k2_xboole_0(A,B) = k2_xboole_0(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : k3_xboole_0(A,B) = k3_xboole_0(B,A) ).
fof(d2_latsum_1,axiom,
! [A] :
( l1_orders_2(A)
=> ! [B] :
( l1_orders_2(B)
=> ! [C] :
( ( v1_orders_2(C)
& l1_orders_2(C) )
=> ( C = k1_latsum_1(A,B)
<=> ( u1_struct_0(C) = k2_xboole_0(u1_struct_0(A),u1_struct_0(B))
& u1_orders_2(C) = k2_xboole_0(k2_xboole_0(u1_orders_2(A),u1_orders_2(B)),k7_relset_1(u1_struct_0(A),u1_struct_0(A),u1_struct_0(B),u1_struct_0(B),u1_orders_2(A),u1_orders_2(B))) ) ) ) ) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = k2_xboole_0(A,B)
<=> ! [D] :
( r2_hidden(D,C)
<=> ( r2_hidden(D,A)
| r2_hidden(D,B) ) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = k3_xboole_0(A,B)
<=> ! [D] :
( r2_hidden(D,C)
<=> ( r2_hidden(D,A)
& r2_hidden(D,B) ) ) ) ).
fof(d8_relat_1,axiom,
! [A] :
( v1_relat_1(A)
=> ! [B] :
( v1_relat_1(B)
=> ! [C] :
( v1_relat_1(C)
=> ( C = k5_relat_1(A,B)
<=> ! [D,E] :
( r2_hidden(k4_tarski(D,E),C)
<=> ? [F] :
( r2_hidden(k4_tarski(D,F),A)
& r2_hidden(k4_tarski(F,E),B) ) ) ) ) ) ) ).
fof(d9_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( r1_orders_2(A,B,C)
<=> r2_hidden(k4_tarski(B,C),u1_orders_2(A)) ) ) ) ) ).
fof(dt_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ( v1_orders_2(g1_orders_2(A,B))
& l1_orders_2(g1_orders_2(A,B)) ) ) ).
fof(dt_k1_latsum_1,axiom,
! [A,B] :
( ( l1_orders_2(A)
& l1_orders_2(B) )
=> ( v1_orders_2(k1_latsum_1(A,B))
& l1_orders_2(k1_latsum_1(A,B)) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_k5_relat_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_relat_1(B) )
=> v1_relat_1(k5_relat_1(A,B)) ) ).
fof(dt_k7_relset_1,axiom,
! [A,B,C,D,E,F] :
( ( m1_relset_1(E,A,B)
& m1_relset_1(F,C,D) )
=> m2_relset_1(k7_relset_1(A,B,C,D,E,F),A,D) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> m2_relset_1(u1_orders_2(A),u1_struct_0(A),u1_struct_0(A)) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : l1_orders_2(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc1_latsum_1,axiom,
! [A,B] :
( ( l1_orders_2(A)
& ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ( ~ v3_struct_0(k1_latsum_1(A,B))
& v1_orders_2(k1_latsum_1(A,B)) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc2_latsum_1,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A)
& l1_orders_2(B) )
=> ( ~ v3_struct_0(k1_latsum_1(A,B))
& v1_orders_2(k1_latsum_1(A,B)) ) ) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ v1_xboole_0(A)
=> ~ v1_xboole_0(k2_xboole_0(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ v1_xboole_0(A)
=> ~ v1_xboole_0(k2_xboole_0(B,A)) ) ).
fof(free_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ! [C,D] :
( g1_orders_2(A,B) = g1_orders_2(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : k2_xboole_0(A,A) = A ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : k3_xboole_0(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(redefinition_k7_relset_1,axiom,
! [A,B,C,D,E,F] :
( ( m1_relset_1(E,A,B)
& m1_relset_1(F,C,D) )
=> k7_relset_1(A,B,C,D,E,F) = k5_relat_1(E,F) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(redefinition_r3_orders_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& l1_orders_2(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> ( r3_orders_2(A,B,C)
<=> r1_orders_2(A,B,C) ) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(reflexivity_r3_orders_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& l1_orders_2(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> r3_orders_2(A,B,B) ) ).
fof(t106_zfmisc_1,axiom,
! [A,B,C,D] :
( r2_hidden(k4_tarski(A,B),k2_zfmisc_1(C,D))
<=> ( r2_hidden(A,C)
& r2_hidden(B,D) ) ) ).
fof(t12_latsum_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( r2_hidden(C,k3_xboole_0(u1_struct_0(A),u1_struct_0(B)))
=> m1_subset_1(C,u1_struct_0(A)) ) ) ) ).
fof(t13_latsum_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( r2_hidden(C,k3_xboole_0(u1_struct_0(A),u1_struct_0(B)))
=> m1_subset_1(C,u1_struct_0(B)) ) ) ) ).
fof(t1_boole,axiom,
! [A] : k2_xboole_0(A,k1_xboole_0) = A ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t24_orders_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& l1_orders_2(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> r1_orders_2(A,B,B) ) ) ).
fof(t2_boole,axiom,
! [A] : k3_xboole_0(A,k1_xboole_0) = k1_xboole_0 ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_latsum_1,axiom,
! [A] :
( l1_orders_2(A)
=> ! [B] :
( l1_orders_2(B)
=> ( ( v2_orders_2(A)
& v2_orders_2(B) )
=> v2_orders_2(k1_latsum_1(A,B)) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t6_latsum_1,axiom,
! [A] :
( l1_orders_2(A)
=> ! [B] :
( l1_orders_2(B)
=> ! [C,D] :
( ( r2_hidden(k4_tarski(C,D),u1_orders_2(A))
=> r2_hidden(k4_tarski(C,D),u1_orders_2(k1_latsum_1(A,B))) )
& ( r2_hidden(k4_tarski(C,D),u1_orders_2(B))
=> r2_hidden(k4_tarski(C,D),u1_orders_2(k1_latsum_1(A,B))) ) ) ) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
fof(t8_latsum_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ! [E] :
( m1_subset_1(E,u1_struct_0(k1_latsum_1(A,B)))
=> ! [F] :
( m1_subset_1(F,u1_struct_0(k1_latsum_1(A,B)))
=> ( ( C = E
& D = F
& r1_latsum_1(A,B)
& v3_orders_2(A) )
=> ( r1_orders_2(A,C,D)
<=> r1_orders_2(k1_latsum_1(A,B),E,F) ) ) ) ) ) ) ) ) ).
fof(t9_latsum_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(k1_latsum_1(A,B)))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(k1_latsum_1(A,B)))
=> ! [E] :
( m1_subset_1(E,u1_struct_0(B))
=> ! [F] :
( m1_subset_1(F,u1_struct_0(B))
=> ( ( C = E
& D = F
& r1_latsum_1(A,B)
& v3_orders_2(B) )
=> ( r1_orders_2(k1_latsum_1(A,B),C,D)
<=> r1_orders_2(B,E,F) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------