TPTP Problem File: SEU406+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU406+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Problem : The Operation of Addition of Relational Structures T01
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [RG04] Romanowicz & Grabowski (2004), The Operation of Additi
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t1_latsum_1 [Urb08]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.31 v8.2.0, 0.28 v7.5.0, 0.31 v7.4.0, 0.13 v7.3.0, 0.31 v7.1.0, 0.22 v7.0.0, 0.23 v6.3.0, 0.33 v6.2.0, 0.32 v6.1.0, 0.40 v6.0.0, 0.39 v5.5.0, 0.44 v5.4.0, 0.46 v5.3.0, 0.48 v5.2.0, 0.35 v5.1.0, 0.43 v5.0.0, 0.46 v4.1.0, 0.39 v4.0.1, 0.35 v4.0.0, 0.38 v3.7.0, 0.35 v3.5.0, 0.37 v3.4.0
% Syntax : Number of formulae : 24 ( 14 unt; 0 def)
% Number of atoms : 46 ( 9 equ)
% Maximal formula atoms : 10 ( 1 avg)
% Number of connectives : 36 ( 14 ~; 2 |; 12 &)
% ( 2 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 3 usr; 1 prp; 0-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 36 ( 33 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t1_latsum_1,conjecture,
! [A,B,C,D] :
~ ( r2_hidden(A,k2_xboole_0(C,D))
& r2_hidden(B,k2_xboole_0(C,D))
& ~ ( r2_hidden(A,k4_xboole_0(C,D))
& r2_hidden(B,k4_xboole_0(C,D)) )
& ~ ( r2_hidden(A,D)
& r2_hidden(B,D) )
& ~ ( r2_hidden(A,k4_xboole_0(C,D))
& r2_hidden(B,D) )
& ~ ( r2_hidden(A,D)
& r2_hidden(B,k4_xboole_0(C,D)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : k2_xboole_0(A,B) = k2_xboole_0(B,A) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = k2_xboole_0(A,B)
<=> ! [D] :
( r2_hidden(D,C)
<=> ( r2_hidden(D,A)
| r2_hidden(D,B) ) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(dt_k4_xboole_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ v1_xboole_0(A)
=> ~ v1_xboole_0(k2_xboole_0(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ v1_xboole_0(A)
=> ~ v1_xboole_0(k2_xboole_0(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : k2_xboole_0(A,A) = A ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(t1_boole,axiom,
! [A] : k2_xboole_0(A,k1_xboole_0) = A ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t39_xboole_1,axiom,
! [A,B] : k2_xboole_0(A,k4_xboole_0(B,A)) = k2_xboole_0(A,B) ).
fof(t3_boole,axiom,
! [A] : k4_xboole_0(A,k1_xboole_0) = A ).
fof(t4_boole,axiom,
! [A] : k4_xboole_0(k1_xboole_0,A) = k1_xboole_0 ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------