TPTP Problem File: SEU392+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU392+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t13_yellow19
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t13_yellow19 [Urb07]
% Status : Theorem
% Rating : 0.85 v9.0.0, 0.86 v8.2.0, 0.89 v7.5.0, 0.91 v7.4.0, 0.90 v7.3.0, 0.93 v7.2.0, 0.90 v7.1.0, 0.91 v7.0.0, 0.87 v6.4.0, 0.85 v6.3.0, 0.92 v6.1.0, 0.97 v6.0.0, 0.91 v5.5.0, 0.93 v5.4.0, 0.96 v5.2.0, 0.95 v5.0.0, 1.00 v4.1.0, 0.96 v3.7.0, 0.95 v3.5.0, 1.00 v3.3.0
% Syntax : Number of formulae : 135 ( 15 unt; 0 def)
% Number of atoms : 700 ( 10 equ)
% Maximal formula atoms : 20 ( 5 avg)
% Number of connectives : 684 ( 119 ~; 1 |; 410 &)
% ( 10 <=>; 144 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 6 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 56 ( 54 usr; 1 prp; 0-3 aty)
% Number of functors : 12 ( 12 usr; 1 con; 0-2 aty)
% Number of variables : 221 ( 177 !; 44 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(abstractness_v1_orders_2,axiom,
! [A] :
( rel_str(A)
=> ( strict_rel_str(A)
=> A = rel_str_of(the_carrier(A),the_InternalRel(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc10_waybel_0,axiom,
! [A] :
( rel_str(A)
=> ( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& complete_relstr(A) )
=> ( ~ empty_carrier(A)
& reflexive_relstr(A)
& up_complete_relstr(A)
& join_complete_relstr(A) ) ) ) ).
fof(cc11_waybel_0,axiom,
! [A] :
( rel_str(A)
=> ( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& join_complete_relstr(A) )
=> ( ~ empty_carrier(A)
& reflexive_relstr(A)
& lower_bounded_relstr(A) ) ) ) ).
fof(cc12_waybel_0,axiom,
! [A] :
( rel_str(A)
=> ( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& with_suprema_relstr(A)
& lower_bounded_relstr(A)
& up_complete_relstr(A) )
=> ( ~ empty_carrier(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& with_suprema_relstr(A)
& with_infima_relstr(A)
& complete_relstr(A)
& lower_bounded_relstr(A)
& upper_bounded_relstr(A)
& bounded_relstr(A) ) ) ) ).
fof(cc13_waybel_0,axiom,
! [A] :
( rel_str(A)
=> ( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& antisymmetric_relstr(A)
& join_complete_relstr(A) )
=> ( ~ empty_carrier(A)
& reflexive_relstr(A)
& antisymmetric_relstr(A)
& with_infima_relstr(A) ) ) ) ).
fof(cc14_waybel_0,axiom,
! [A] :
( rel_str(A)
=> ( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& antisymmetric_relstr(A)
& upper_bounded_relstr(A)
& join_complete_relstr(A) )
=> ( ~ empty_carrier(A)
& reflexive_relstr(A)
& antisymmetric_relstr(A)
& with_suprema_relstr(A)
& upper_bounded_relstr(A) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( empty(A)
=> finite(A) ) ).
fof(cc1_lattice3,axiom,
! [A] :
( rel_str(A)
=> ( with_suprema_relstr(A)
=> ~ empty_carrier(A) ) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(cc1_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( empty(B)
=> ( open_subset(B,A)
& closed_subset(B,A) ) ) ) ) ).
fof(cc1_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ( ( ~ empty_carrier(A)
& complete_relstr(A) )
=> ( ~ empty_carrier(A)
& with_suprema_relstr(A)
& with_infima_relstr(A) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( finite(A)
=> ! [B] :
( element(B,powerset(A))
=> finite(B) ) ) ).
fof(cc2_lattice3,axiom,
! [A] :
( rel_str(A)
=> ( with_infima_relstr(A)
=> ~ empty_carrier(A) ) ) ).
fof(cc2_tops_1,axiom,
! [A] :
( top_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( empty(B)
=> boundary_set(B,A) ) ) ) ).
fof(cc2_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& trivial_carrier(A) )
=> ( ~ empty_carrier(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& complete_relstr(A) ) ) ) ).
fof(cc3_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( empty(B)
=> nowhere_dense(B,A) ) ) ) ).
fof(cc3_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ( ( ~ empty_carrier(A)
& complete_relstr(A) )
=> ( ~ empty_carrier(A)
& bounded_relstr(A) ) ) ) ).
fof(cc4_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( nowhere_dense(B,A)
=> boundary_set(B,A) ) ) ) ).
fof(cc4_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ( bounded_relstr(A)
=> ( lower_bounded_relstr(A)
& upper_bounded_relstr(A) ) ) ) ).
fof(cc5_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( ( closed_subset(B,A)
& boundary_set(B,A) )
=> ( boundary_set(B,A)
& nowhere_dense(B,A) ) ) ) ) ).
fof(cc5_waybel_0,axiom,
! [A] :
( rel_str(A)
=> ( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& trivial_carrier(A) )
=> ( ~ empty_carrier(A)
& reflexive_relstr(A)
& connected_relstr(A) ) ) ) ).
fof(cc5_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ( ( lower_bounded_relstr(A)
& upper_bounded_relstr(A) )
=> bounded_relstr(A) ) ) ).
fof(cc6_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( ( open_subset(B,A)
& nowhere_dense(B,A) )
=> ( empty(B)
& open_subset(B,A)
& closed_subset(B,A)
& v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B)
& boundary_set(B,A)
& nowhere_dense(B,A) ) ) ) ) ).
fof(cc9_waybel_0,axiom,
! [A] :
( rel_str(A)
=> ( ( reflexive_relstr(A)
& with_suprema_relstr(A)
& up_complete_relstr(A) )
=> ( ~ empty_carrier(A)
& reflexive_relstr(A)
& with_suprema_relstr(A)
& upper_bounded_relstr(A) ) ) ) ).
fof(d18_yellow_6,axiom,
! [A] :
( ( ~ empty_carrier(A)
& topological_space(A)
& top_str(A) )
=> ! [B] :
( ( ~ empty_carrier(B)
& transitive_relstr(B)
& directed_relstr(B)
& net_str(B,A) )
=> ! [C] :
( element(C,powerset(the_carrier(A)))
=> ( C = lim_points_of_net(A,B)
<=> ! [D] :
( element(D,the_carrier(A))
=> ( in(D,C)
<=> ! [E] :
( point_neighbourhood(E,A,D)
=> is_eventually_in(A,B,E) ) ) ) ) ) ) ) ).
fof(d1_connsp_2,axiom,
! [A] :
( ( ~ empty_carrier(A)
& topological_space(A)
& top_str(A) )
=> ! [B] :
( element(B,the_carrier(A))
=> ! [C] :
( element(C,powerset(the_carrier(A)))
=> ( point_neighbourhood(C,A,B)
<=> in(B,interior(A,C)) ) ) ) ) ).
fof(d3_yellow19,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ! [B] :
( ( ~ empty_carrier(B)
& net_str(B,A) )
=> filter_of_net_str(A,B) = a_2_1_yellow19(A,B) ) ) ).
fof(d5_waybel_7,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ! [B,C] :
( is_a_convergence_point_of_set(A,B,C)
<=> ! [D] :
( element(D,powerset(the_carrier(A)))
=> ( ( open_subset(D,A)
& in(C,D) )
=> in(D,B) ) ) ) ) ).
fof(dt_g1_orders_2,axiom,
! [A,B] :
( relation_of2(B,A,A)
=> ( strict_rel_str(rel_str_of(A,B))
& rel_str(rel_str_of(A,B)) ) ) ).
fof(dt_k11_yellow_6,axiom,
! [A,B] :
( ( ~ empty_carrier(A)
& topological_space(A)
& top_str(A)
& ~ empty_carrier(B)
& transitive_relstr(B)
& directed_relstr(B)
& net_str(B,A) )
=> element(lim_points_of_net(A,B),powerset(the_carrier(A))) ) ).
fof(dt_k1_tops_1,axiom,
! [A,B] :
( ( top_str(A)
& element(B,powerset(the_carrier(A))) )
=> element(interior(A,B),powerset(the_carrier(A))) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> element(cast_as_carrier_subset(A),powerset(the_carrier(A))) ) ).
fof(dt_k2_yellow19,axiom,
! [A,B] :
( ( ~ empty_carrier(A)
& one_sorted_str(A)
& ~ empty_carrier(B)
& net_str(B,A) )
=> element(filter_of_net_str(A,B),powerset(the_carrier(boole_POSet(cast_as_carrier_subset(A))))) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_yellow_1,axiom,
! [A] :
( strict_rel_str(boole_POSet(A))
& rel_str(boole_POSet(A)) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_pre_topc,axiom,
! [A] :
( top_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l1_waybel_0,axiom,
! [A] :
( one_sorted_str(A)
=> ! [B] :
( net_str(B,A)
=> rel_str(B) ) ) ).
fof(dt_m1_connsp_2,axiom,
! [A,B] :
( ( ~ empty_carrier(A)
& topological_space(A)
& top_str(A)
& element(B,the_carrier(A)) )
=> ! [C] :
( point_neighbourhood(C,A,B)
=> element(C,powerset(the_carrier(A))) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> element(C,powerset(cartesian_product2(A,B))) ) ).
fof(dt_u1_orders_2,axiom,
! [A] :
( rel_str(A)
=> relation_of2_as_subset(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : rel_str(A) ).
fof(existence_l1_pre_topc,axiom,
? [A] : top_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_l1_waybel_0,axiom,
! [A] :
( one_sorted_str(A)
=> ? [B] : net_str(B,A) ) ).
fof(existence_m1_connsp_2,axiom,
! [A,B] :
( ( ~ empty_carrier(A)
& topological_space(A)
& top_str(A)
& element(B,the_carrier(A)) )
=> ? [C] : point_neighbourhood(C,A,B) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : relation_of2(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : relation_of2_as_subset(C,A,B) ).
fof(fc10_tops_1,axiom,
! [A,B] :
( ( top_str(A)
& boundary_set(B,A)
& element(B,powerset(the_carrier(A))) )
=> ( empty(interior(A,B))
& v1_membered(interior(A,B))
& v2_membered(interior(A,B))
& v3_membered(interior(A,B))
& v4_membered(interior(A,B))
& v5_membered(interior(A,B))
& boundary_set(interior(A,B),A) ) ) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( finite(A)
& finite(B) )
=> finite(cartesian_product2(A,B)) ) ).
fof(fc15_waybel_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& rel_str(A) )
=> ( ~ empty(cast_as_carrier_subset(A))
& lower_relstr_subset(cast_as_carrier_subset(A),A)
& upper_relstr_subset(cast_as_carrier_subset(A),A) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ~ empty(the_carrier(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_waybel_7,axiom,
! [A] :
( ~ empty_carrier(boole_POSet(A))
& strict_rel_str(boole_POSet(A))
& reflexive_relstr(boole_POSet(A))
& transitive_relstr(boole_POSet(A))
& antisymmetric_relstr(boole_POSet(A))
& lower_bounded_relstr(boole_POSet(A))
& upper_bounded_relstr(boole_POSet(A))
& bounded_relstr(boole_POSet(A))
& up_complete_relstr(boole_POSet(A))
& join_complete_relstr(boole_POSet(A))
& ~ v1_yellow_3(boole_POSet(A))
& distributive_relstr(boole_POSet(A))
& heyting_relstr(boole_POSet(A))
& complemented_relstr(boole_POSet(A))
& boolean_relstr(boole_POSet(A))
& with_suprema_relstr(boole_POSet(A))
& with_infima_relstr(boole_POSet(A))
& complete_relstr(boole_POSet(A)) ) ).
fof(fc2_pre_topc,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ~ empty(cast_as_carrier_subset(A)) ) ).
fof(fc2_waybel_0,axiom,
! [A] :
( ( with_suprema_relstr(A)
& rel_str(A) )
=> ( ~ empty(cast_as_carrier_subset(A))
& directed_subset(cast_as_carrier_subset(A),A) ) ) ).
fof(fc2_waybel_7,axiom,
! [A] :
( ~ empty(A)
=> ( ~ empty_carrier(boole_POSet(A))
& ~ trivial_carrier(boole_POSet(A))
& strict_rel_str(boole_POSet(A))
& reflexive_relstr(boole_POSet(A))
& transitive_relstr(boole_POSet(A))
& antisymmetric_relstr(boole_POSet(A))
& lower_bounded_relstr(boole_POSet(A))
& upper_bounded_relstr(boole_POSet(A))
& bounded_relstr(boole_POSet(A))
& up_complete_relstr(boole_POSet(A))
& join_complete_relstr(boole_POSet(A))
& ~ v1_yellow_3(boole_POSet(A))
& distributive_relstr(boole_POSet(A))
& heyting_relstr(boole_POSet(A))
& complemented_relstr(boole_POSet(A))
& boolean_relstr(boole_POSet(A))
& with_suprema_relstr(boole_POSet(A))
& with_infima_relstr(boole_POSet(A))
& complete_relstr(boole_POSet(A)) ) ) ).
fof(fc2_yellow19,axiom,
! [A,B] :
( ( ~ empty_carrier(A)
& one_sorted_str(A)
& ~ empty_carrier(B)
& net_str(B,A) )
=> ( ~ empty(filter_of_net_str(A,B))
& upper_relstr_subset(filter_of_net_str(A,B),boole_POSet(cast_as_carrier_subset(A))) ) ) ).
fof(fc2_yellow_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& rel_str(A) )
=> ~ empty(cast_as_carrier_subset(A)) ) ).
fof(fc3_waybel_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& upper_bounded_relstr(A)
& rel_str(A) )
=> ( ~ empty(cast_as_carrier_subset(A))
& directed_subset(cast_as_carrier_subset(A),A) ) ) ).
fof(fc3_yellow19,axiom,
! [A,B] :
( ( ~ empty_carrier(A)
& one_sorted_str(A)
& ~ empty_carrier(B)
& transitive_relstr(B)
& directed_relstr(B)
& net_str(B,A) )
=> ( ~ empty(filter_of_net_str(A,B))
& filtered_subset(filter_of_net_str(A,B),boole_POSet(cast_as_carrier_subset(A)))
& upper_relstr_subset(filter_of_net_str(A,B),boole_POSet(cast_as_carrier_subset(A)))
& proper_element(filter_of_net_str(A,B),powerset(the_carrier(boole_POSet(cast_as_carrier_subset(A))))) ) ) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
& ~ empty(B) )
=> ~ empty(cartesian_product2(A,B)) ) ).
fof(fc4_waybel_0,axiom,
! [A] :
( ( with_infima_relstr(A)
& rel_str(A) )
=> ( ~ empty(cast_as_carrier_subset(A))
& filtered_subset(cast_as_carrier_subset(A),A) ) ) ).
fof(fc5_pre_topc,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> closed_subset(cast_as_carrier_subset(A),A) ) ).
fof(fc5_waybel_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& lower_bounded_relstr(A)
& rel_str(A) )
=> ( ~ empty(cast_as_carrier_subset(A))
& filtered_subset(cast_as_carrier_subset(A),A) ) ) ).
fof(fc6_tops_1,axiom,
! [A,B] :
( ( topological_space(A)
& top_str(A)
& element(B,powerset(the_carrier(A))) )
=> open_subset(interior(A,B),A) ) ).
fof(fc7_yellow_1,axiom,
! [A] :
( ~ empty_carrier(boole_POSet(A))
& strict_rel_str(boole_POSet(A))
& reflexive_relstr(boole_POSet(A))
& transitive_relstr(boole_POSet(A))
& antisymmetric_relstr(boole_POSet(A)) ) ).
fof(fc8_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ( open_subset(cast_as_carrier_subset(A),A)
& closed_subset(cast_as_carrier_subset(A),A) ) ) ).
fof(fc8_yellow_1,axiom,
! [A] :
( ~ empty_carrier(boole_POSet(A))
& strict_rel_str(boole_POSet(A))
& reflexive_relstr(boole_POSet(A))
& transitive_relstr(boole_POSet(A))
& antisymmetric_relstr(boole_POSet(A))
& lower_bounded_relstr(boole_POSet(A))
& upper_bounded_relstr(boole_POSet(A))
& bounded_relstr(boole_POSet(A))
& with_suprema_relstr(boole_POSet(A))
& with_infima_relstr(boole_POSet(A))
& complete_relstr(boole_POSet(A)) ) ).
fof(fc8_yellow_6,axiom,
! [A] :
( ~ empty_carrier(boole_POSet(A))
& strict_rel_str(boole_POSet(A))
& reflexive_relstr(boole_POSet(A))
& transitive_relstr(boole_POSet(A))
& antisymmetric_relstr(boole_POSet(A))
& lower_bounded_relstr(boole_POSet(A))
& upper_bounded_relstr(boole_POSet(A))
& bounded_relstr(boole_POSet(A))
& directed_relstr(boole_POSet(A))
& up_complete_relstr(boole_POSet(A))
& join_complete_relstr(boole_POSet(A))
& ~ v1_yellow_3(boole_POSet(A))
& with_suprema_relstr(boole_POSet(A))
& with_infima_relstr(boole_POSet(A))
& complete_relstr(boole_POSet(A)) ) ).
fof(fc9_tops_1,axiom,
! [A] :
( top_str(A)
=> dense(cast_as_carrier_subset(A),A) ) ).
fof(fraenkel_a_2_1_yellow19,axiom,
! [A,B,C] :
( ( ~ empty_carrier(B)
& one_sorted_str(B)
& ~ empty_carrier(C)
& net_str(C,B) )
=> ( in(A,a_2_1_yellow19(B,C))
<=> ? [D] :
( element(D,powerset(the_carrier(B)))
& A = D
& is_eventually_in(B,C,D) ) ) ) ).
fof(free_g1_orders_2,axiom,
! [A,B] :
( relation_of2(B,A,A)
=> ! [C,D] :
( rel_str_of(A,B) = rel_str_of(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(rc10_waybel_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& rel_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B)
& filtered_subset(B,A)
& upper_relstr_subset(B,A) ) ) ).
fof(rc11_waybel_0,axiom,
! [A] :
( ( reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& with_suprema_relstr(A)
& with_infima_relstr(A)
& rel_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B)
& directed_subset(B,A)
& filtered_subset(B,A)
& lower_relstr_subset(B,A)
& upper_relstr_subset(B,A) ) ) ).
fof(rc12_waybel_0,axiom,
? [A] :
( rel_str(A)
& ~ empty_carrier(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& connected_relstr(A) ) ).
fof(rc13_waybel_0,axiom,
? [A] :
( rel_str(A)
& ~ empty_carrier(A)
& strict_rel_str(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& with_suprema_relstr(A)
& with_infima_relstr(A)
& complete_relstr(A)
& lower_bounded_relstr(A)
& upper_bounded_relstr(A)
& bounded_relstr(A)
& up_complete_relstr(A)
& join_complete_relstr(A) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ empty(A)
& finite(A) ) ).
fof(rc1_lattice3,axiom,
? [A] :
( rel_str(A)
& ~ empty_carrier(A)
& strict_rel_str(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& complete_relstr(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& open_subset(B,A) ) ) ).
fof(rc1_waybel_0,axiom,
! [A] :
( rel_str(A)
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& directed_subset(B,A)
& filtered_subset(B,A) ) ) ).
fof(rc1_waybel_7,axiom,
? [A] :
( rel_str(A)
& ~ empty_carrier(A)
& ~ trivial_carrier(A)
& strict_rel_str(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& lower_bounded_relstr(A)
& upper_bounded_relstr(A)
& bounded_relstr(A)
& ~ v1_yellow_3(A)
& distributive_relstr(A)
& heyting_relstr(A)
& complemented_relstr(A)
& boolean_relstr(A)
& with_suprema_relstr(A)
& with_infima_relstr(A) ) ).
fof(rc1_yellow_0,axiom,
? [A] :
( rel_str(A)
& ~ empty_carrier(A)
& strict_rel_str(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& with_suprema_relstr(A)
& with_infima_relstr(A)
& complete_relstr(A)
& trivial_carrier(A) ) ).
fof(rc2_lattice3,axiom,
? [A] :
( rel_str(A)
& ~ empty_carrier(A)
& strict_rel_str(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& with_suprema_relstr(A)
& with_infima_relstr(A)
& complete_relstr(A) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& open_subset(B,A)
& closed_subset(B,A) ) ) ).
fof(rc2_waybel_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& rel_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B)
& finite(B)
& directed_subset(B,A)
& filtered_subset(B,A) ) ) ).
fof(rc2_waybel_7,axiom,
! [A] :
? [B] :
( element(B,powerset(powerset(A)))
& ~ empty(B)
& finite(B) ) ).
fof(rc2_yellow_0,axiom,
? [A] :
( rel_str(A)
& ~ empty_carrier(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& with_suprema_relstr(A)
& with_infima_relstr(A)
& complete_relstr(A)
& lower_bounded_relstr(A)
& upper_bounded_relstr(A)
& bounded_relstr(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( one_sorted_str(A)
& ~ empty_carrier(A) ) ).
fof(rc3_tops_1,axiom,
! [A] :
( ( ~ empty_carrier(A)
& topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B)
& open_subset(B,A)
& closed_subset(B,A) ) ) ).
fof(rc3_waybel_7,axiom,
! [A] :
( one_sorted_str(A)
=> ? [B] :
( element(B,powerset(powerset(the_carrier(A))))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B)
& finite(B) ) ) ).
fof(rc4_tops_1,axiom,
! [A] :
( top_str(A)
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& empty(B)
& v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B)
& boundary_set(B,A) ) ) ).
fof(rc4_waybel_7,axiom,
! [A] :
( ( ~ empty_carrier(A)
& ~ trivial_carrier(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& upper_bounded_relstr(A)
& rel_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B)
& proper_element(B,powerset(the_carrier(A)))
& filtered_subset(B,A)
& upper_relstr_subset(B,A) ) ) ).
fof(rc4_yellow_6,axiom,
? [A] :
( rel_str(A)
& ~ empty_carrier(A)
& strict_rel_str(A)
& transitive_relstr(A)
& directed_relstr(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B) ) ) ).
fof(rc5_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& empty(B)
& open_subset(B,A)
& closed_subset(B,A)
& v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B)
& boundary_set(B,A)
& nowhere_dense(B,A) ) ) ).
fof(rc6_pre_topc,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& closed_subset(B,A) ) ) ).
fof(rc7_pre_topc,axiom,
! [A] :
( ( ~ empty_carrier(A)
& topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B)
& closed_subset(B,A) ) ) ).
fof(rc7_waybel_0,axiom,
! [A] :
( rel_str(A)
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& lower_relstr_subset(B,A)
& upper_relstr_subset(B,A) ) ) ).
fof(rc8_waybel_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& rel_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B)
& lower_relstr_subset(B,A)
& upper_relstr_subset(B,A) ) ) ).
fof(rc9_waybel_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& rel_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B)
& directed_subset(B,A)
& lower_relstr_subset(B,A) ) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
<=> relation_of2(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t11_yellow19,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ! [B] :
( ( ~ empty_carrier(B)
& net_str(B,A) )
=> ! [C] :
( in(C,filter_of_net_str(A,B))
<=> ( is_eventually_in(A,B,C)
& element(C,powerset(the_carrier(A))) ) ) ) ) ).
fof(t13_yellow19,conjecture,
! [A] :
( ( ~ empty_carrier(A)
& topological_space(A)
& top_str(A) )
=> ! [B] :
( ( ~ empty_carrier(B)
& transitive_relstr(B)
& directed_relstr(B)
& net_str(B,A) )
=> ! [C] :
( element(C,the_carrier(A))
=> ( in(C,lim_points_of_net(A,B))
<=> is_a_convergence_point_of_set(A,filter_of_net_str(A,B),C) ) ) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
<=> in(C,B) )
=> A = B ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t44_tops_1,axiom,
! [A] :
( top_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> subset(interior(A,B),B) ) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_connsp_2,axiom,
! [A] :
( ( ~ empty_carrier(A)
& topological_space(A)
& top_str(A) )
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ! [C] :
( element(C,the_carrier(A))
=> ( ( open_subset(B,A)
& in(C,B) )
=> point_neighbourhood(B,A,C) ) ) ) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t8_waybel_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ! [B] :
( ( ~ empty_carrier(B)
& net_str(B,A) )
=> ! [C,D] :
( subset(C,D)
=> ( ( is_eventually_in(A,B,C)
=> is_eventually_in(A,B,D) )
& ( is_often_in(A,B,C)
=> is_often_in(A,B,D) ) ) ) ) ) ).
%------------------------------------------------------------------------------