TPTP Problem File: SEU386+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU386+1 : TPTP v9.0.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t29_waybel_9
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t29_waybel_9 [Urb07]

% Status   : Theorem
% Rating   : 0.24 v9.0.0, 0.22 v8.2.0, 0.19 v8.1.0, 0.17 v7.5.0, 0.19 v7.4.0, 0.20 v7.3.0, 0.21 v7.2.0, 0.17 v7.0.0, 0.20 v6.4.0, 0.27 v6.3.0, 0.17 v6.2.0, 0.24 v6.1.0, 0.33 v6.0.0, 0.22 v5.5.0, 0.26 v5.4.0, 0.36 v5.3.0, 0.44 v5.2.0, 0.30 v5.1.0, 0.29 v5.0.0, 0.42 v4.1.0, 0.39 v4.0.0, 0.42 v3.7.0, 0.35 v3.5.0, 0.37 v3.3.0
% Syntax   : Number of formulae    :   45 (  13 unt;   0 def)
%            Number of atoms       :  139 (   3 equ)
%            Maximal formula atoms :   13 (   3 avg)
%            Number of connectives :  123 (  29   ~;   1   |;  49   &)
%                                         (   4 <=>;  40  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   5 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   23 (  21 usr;   1 prp; 0-3 aty)
%            Number of functors    :    4 (   4 usr;   1 con; 0-2 aty)
%            Number of variables   :   73 (  60   !;  13   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc1_finset_1,axiom,
    ! [A] :
      ( empty(A)
     => finite(A) ) ).

fof(cc1_finsub_1,axiom,
    ! [A] :
      ( preboolean(A)
     => ( cup_closed(A)
        & diff_closed(A) ) ) ).

fof(cc1_funct_1,axiom,
    ! [A] :
      ( empty(A)
     => function(A) ) ).

fof(cc2_finset_1,axiom,
    ! [A] :
      ( finite(A)
     => ! [B] :
          ( element(B,powerset(A))
         => finite(B) ) ) ).

fof(cc2_finsub_1,axiom,
    ! [A] :
      ( ( cup_closed(A)
        & diff_closed(A) )
     => preboolean(A) ) ).

fof(d18_yellow_6,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & transitive_relstr(B)
            & directed_relstr(B)
            & net_str(B,A) )
         => ! [C] :
              ( element(C,powerset(the_carrier(A)))
             => ( C = lim_points_of_net(A,B)
              <=> ! [D] :
                    ( element(D,the_carrier(A))
                   => ( in(D,C)
                    <=> ! [E] :
                          ( point_neighbourhood(E,A,D)
                         => is_eventually_in(A,B,E) ) ) ) ) ) ) ) ).

fof(d9_waybel_9,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & net_str(B,A) )
         => ! [C] :
              ( element(C,the_carrier(A))
             => ( is_a_cluster_point_of_netstr(A,B,C)
              <=> ! [D] :
                    ( point_neighbourhood(D,A,C)
                   => is_often_in(A,B,D) ) ) ) ) ) ).

fof(dt_k11_yellow_6,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A)
        & ~ empty_carrier(B)
        & transitive_relstr(B)
        & directed_relstr(B)
        & net_str(B,A) )
     => element(lim_points_of_net(A,B),powerset(the_carrier(A))) ) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_l1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l1_pre_topc,axiom,
    ! [A] :
      ( top_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l1_struct_0,axiom,
    $true ).

fof(dt_l1_waybel_0,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => ! [B] :
          ( net_str(B,A)
         => rel_str(B) ) ) ).

fof(dt_m1_connsp_2,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A)
        & element(B,the_carrier(A)) )
     => ! [C] :
          ( point_neighbourhood(C,A,B)
         => element(C,powerset(the_carrier(A))) ) ) ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_u1_struct_0,axiom,
    $true ).

fof(existence_l1_orders_2,axiom,
    ? [A] : rel_str(A) ).

fof(existence_l1_pre_topc,axiom,
    ? [A] : top_str(A) ).

fof(existence_l1_struct_0,axiom,
    ? [A] : one_sorted_str(A) ).

fof(existence_l1_waybel_0,axiom,
    ! [A] :
      ( one_sorted_str(A)
     => ? [B] : net_str(B,A) ) ).

fof(existence_m1_connsp_2,axiom,
    ! [A,B] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A)
        & element(B,the_carrier(A)) )
     => ? [C] : point_neighbourhood(C,A,B) ) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(fc1_finsub_1,axiom,
    ! [A] :
      ( ~ empty(powerset(A))
      & cup_closed(powerset(A))
      & diff_closed(powerset(A))
      & preboolean(powerset(A)) ) ).

fof(fc1_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ~ empty(the_carrier(A)) ) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(rc1_finset_1,axiom,
    ? [A] :
      ( ~ empty(A)
      & finite(A) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(rc3_finset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B)
          & finite(B) ) ) ).

fof(rc3_struct_0,axiom,
    ? [A] :
      ( one_sorted_str(A)
      & ~ empty_carrier(A) ) ).

fof(rc4_finset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B)
          & finite(B) ) ) ).

fof(rc5_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & ~ empty(B) ) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t28_yellow_6,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & transitive_relstr(B)
            & directed_relstr(B)
            & net_str(B,A) )
         => ! [C] :
              ( is_eventually_in(A,B,C)
             => is_often_in(A,B,C) ) ) ) ).

fof(t29_waybel_9,conjecture,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & topological_space(A)
        & top_str(A) )
     => ! [B] :
          ( ( ~ empty_carrier(B)
            & transitive_relstr(B)
            & directed_relstr(B)
            & net_str(B,A) )
         => ! [C] :
              ( element(C,the_carrier(A))
             => ( in(C,lim_points_of_net(A,B))
               => is_a_cluster_point_of_netstr(A,B,C) ) ) ) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

%------------------------------------------------------------------------------