TPTP Problem File: SEU370+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU370+1 : TPTP v8.2.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t4_yellow_1
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t4_yellow_1 [Urb07]

% Status   : Theorem
% Rating   : 0.97 v8.2.0, 1.00 v6.2.0, 0.96 v6.1.0, 1.00 v3.3.0
% Syntax   : Number of formulae    :  154 (  44 unt;   0 def)
%            Number of atoms       :  653 (  42 equ)
%            Maximal formula atoms :   17 (   4 avg)
%            Number of connectives :  591 (  92   ~;   1   |; 385   &)
%                                         (  10 <=>; 103  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   18 (   6 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   50 (  48 usr;   1 prp; 0-3 aty)
%            Number of functors    :   30 (  30 usr;   1 con; 0-3 aty)
%            Number of variables   :  236 ( 208   !;  28   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(abstractness_v1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => ( strict_rel_str(A)
       => A = rel_str_of(the_carrier(A),the_InternalRel(A)) ) ) ).

fof(abstractness_v3_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( strict_latt_str(A)
       => A = latt_str_of(the_carrier(A),the_L_join(A),the_L_meet(A)) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc1_knaster,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & lattice(A)
          & complete_latt_str(A) )
       => ( ~ empty_carrier(A)
          & join_commutative(A)
          & join_associative(A)
          & meet_commutative(A)
          & meet_associative(A)
          & meet_absorbing(A)
          & join_absorbing(A)
          & lattice(A)
          & lower_bounded_semilattstr(A)
          & upper_bounded_semilattstr(A)
          & bounded_lattstr(A) ) ) ) ).

fof(cc1_lattice3,axiom,
    ! [A] :
      ( rel_str(A)
     => ( with_suprema_relstr(A)
       => ~ empty_carrier(A) ) ) ).

fof(cc1_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & lattice(A) )
       => ( ~ empty_carrier(A)
          & join_commutative(A)
          & join_associative(A)
          & meet_commutative(A)
          & meet_associative(A)
          & meet_absorbing(A)
          & join_absorbing(A) ) ) ) ).

fof(cc1_relset_1,axiom,
    ! [A,B,C] :
      ( element(C,powerset(cartesian_product2(A,B)))
     => relation(C) ) ).

fof(cc1_yellow_0,axiom,
    ! [A] :
      ( rel_str(A)
     => ( ( ~ empty_carrier(A)
          & complete_relstr(A) )
       => ( ~ empty_carrier(A)
          & with_suprema_relstr(A)
          & with_infima_relstr(A) ) ) ) ).

fof(cc2_lattice3,axiom,
    ! [A] :
      ( rel_str(A)
     => ( with_infima_relstr(A)
       => ~ empty_carrier(A) ) ) ).

fof(cc2_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & join_commutative(A)
          & join_associative(A)
          & meet_commutative(A)
          & meet_associative(A)
          & meet_absorbing(A)
          & join_absorbing(A) )
       => ( ~ empty_carrier(A)
          & lattice(A) ) ) ) ).

fof(cc2_yellow_0,axiom,
    ! [A] :
      ( rel_str(A)
     => ( ( ~ empty_carrier(A)
          & reflexive_relstr(A)
          & trivial_carrier(A) )
       => ( ~ empty_carrier(A)
          & reflexive_relstr(A)
          & transitive_relstr(A)
          & antisymmetric_relstr(A)
          & complete_relstr(A) ) ) ) ).

fof(cc3_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & lower_bounded_semilattstr(A)
          & upper_bounded_semilattstr(A) )
       => ( ~ empty_carrier(A)
          & bounded_lattstr(A) ) ) ) ).

fof(cc3_yellow_0,axiom,
    ! [A] :
      ( rel_str(A)
     => ( ( ~ empty_carrier(A)
          & complete_relstr(A) )
       => ( ~ empty_carrier(A)
          & bounded_relstr(A) ) ) ) ).

fof(cc4_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & bounded_lattstr(A) )
       => ( ~ empty_carrier(A)
          & lower_bounded_semilattstr(A)
          & upper_bounded_semilattstr(A) ) ) ) ).

fof(cc4_yellow_0,axiom,
    ! [A] :
      ( rel_str(A)
     => ( bounded_relstr(A)
       => ( lower_bounded_relstr(A)
          & upper_bounded_relstr(A) ) ) ) ).

fof(cc5_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & boolean_lattstr(A) )
       => ( ~ empty_carrier(A)
          & distributive_lattstr(A)
          & lower_bounded_semilattstr(A)
          & upper_bounded_semilattstr(A)
          & bounded_lattstr(A)
          & complemented_lattstr(A) ) ) ) ).

fof(cc5_yellow_0,axiom,
    ! [A] :
      ( rel_str(A)
     => ( ( lower_bounded_relstr(A)
          & upper_bounded_relstr(A) )
       => bounded_relstr(A) ) ) ).

fof(cc6_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & distributive_lattstr(A)
          & bounded_lattstr(A)
          & complemented_lattstr(A) )
       => ( ~ empty_carrier(A)
          & boolean_lattstr(A) ) ) ) ).

fof(cc7_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( ( ~ empty_carrier(A)
          & lattice(A)
          & distributive_lattstr(A) )
       => ( ~ empty_carrier(A)
          & join_commutative(A)
          & join_associative(A)
          & meet_commutative(A)
          & meet_associative(A)
          & meet_absorbing(A)
          & join_absorbing(A)
          & lattice(A)
          & modular_lattstr(A) ) ) ) ).

fof(commutativity_k2_tarski,axiom,
    ! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,B) = set_union2(B,A) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).

fof(commutativity_k4_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_union2(A,B,C) = subset_union2(A,C,B) ) ).

fof(commutativity_k5_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_intersection2(A,B,C) = subset_intersection2(A,C,B) ) ).

fof(d1_lattice3,axiom,
    ! [A,B] :
      ( ( strict_latt_str(B)
        & latt_str(B) )
     => ( B = boole_lattice(A)
      <=> ( the_carrier(B) = powerset(A)
          & ! [C] :
              ( element(C,powerset(A))
             => ! [D] :
                  ( element(D,powerset(A))
                 => ( apply_binary(the_L_join(B),C,D) = subset_union2(A,C,D)
                    & apply_binary(the_L_meet(B),C,D) = subset_intersection2(A,C,D) ) ) ) ) ) ) ).

fof(d1_wellord2,axiom,
    ! [A,B] :
      ( relation(B)
     => ( B = inclusion_relation(A)
      <=> ( relation_field(B) = A
          & ! [C,D] :
              ( ( in(C,A)
                & in(D,A) )
             => ( in(ordered_pair(C,D),B)
              <=> subset(C,D) ) ) ) ) ) ).

fof(d1_yellow_1,axiom,
    ! [A] : incl_POSet(A) = rel_str_of(A,inclusion_order(A)) ).

fof(d2_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => poset_of_lattice(A) = rel_str_of(the_carrier(A),k2_lattice3(A)) ) ).

fof(d2_yellow_1,axiom,
    ! [A] : boole_POSet(A) = poset_of_lattice(boole_lattice(A)) ).

fof(d5_tarski,axiom,
    ! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).

fof(d6_relat_1,axiom,
    ! [A] :
      ( relation(A)
     => relation_field(A) = set_union2(relation_dom(A),relation_rng(A)) ) ).

fof(d9_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => ! [B] :
          ( element(B,the_carrier(A))
         => ! [C] :
              ( element(C,the_carrier(A))
             => ( related(A,B,C)
              <=> in(ordered_pair(B,C),the_InternalRel(A)) ) ) ) ) ).

fof(dt_g1_orders_2,axiom,
    ! [A,B] :
      ( relation_of2(B,A,A)
     => ( strict_rel_str(rel_str_of(A,B))
        & rel_str(rel_str_of(A,B)) ) ) ).

fof(dt_g3_lattices,axiom,
    ! [A,B,C] :
      ( ( function(B)
        & quasi_total(B,cartesian_product2(A,A),A)
        & relation_of2(B,cartesian_product2(A,A),A)
        & function(C)
        & quasi_total(C,cartesian_product2(A,A),A)
        & relation_of2(C,cartesian_product2(A,A),A) )
     => ( strict_latt_str(latt_str_of(A,B,C))
        & latt_str(latt_str_of(A,B,C)) ) ) ).

fof(dt_k1_binop_1,axiom,
    $true ).

fof(dt_k1_lattice3,axiom,
    ! [A] :
      ( strict_latt_str(boole_lattice(A))
      & latt_str(boole_lattice(A)) ) ).

fof(dt_k1_relat_1,axiom,
    $true ).

fof(dt_k1_tarski,axiom,
    $true ).

fof(dt_k1_wellord2,axiom,
    ! [A] : relation(inclusion_relation(A)) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_yellow_1,axiom,
    ! [A] :
      ( reflexive(inclusion_order(A))
      & antisymmetric(inclusion_order(A))
      & transitive(inclusion_order(A))
      & v1_partfun1(inclusion_order(A),A,A)
      & relation_of2_as_subset(inclusion_order(A),A,A) ) ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ( reflexive(k2_lattice3(A))
        & antisymmetric(k2_lattice3(A))
        & transitive(k2_lattice3(A))
        & v1_partfun1(k2_lattice3(A),the_carrier(A),the_carrier(A))
        & relation_of2_as_subset(k2_lattice3(A),the_carrier(A),the_carrier(A)) ) ) ).

fof(dt_k2_relat_1,axiom,
    $true ).

fof(dt_k2_tarski,axiom,
    $true ).

fof(dt_k2_xboole_0,axiom,
    $true ).

fof(dt_k2_yellow_1,axiom,
    ! [A] :
      ( strict_rel_str(incl_POSet(A))
      & rel_str(incl_POSet(A)) ) ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k3_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ( strict_rel_str(poset_of_lattice(A))
        & reflexive_relstr(poset_of_lattice(A))
        & transitive_relstr(poset_of_lattice(A))
        & antisymmetric_relstr(poset_of_lattice(A))
        & rel_str(poset_of_lattice(A)) ) ) ).

fof(dt_k3_relat_1,axiom,
    $true ).

fof(dt_k3_xboole_0,axiom,
    $true ).

fof(dt_k3_yellow_1,axiom,
    ! [A] :
      ( strict_rel_str(boole_POSet(A))
      & rel_str(boole_POSet(A)) ) ).

fof(dt_k4_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => element(relation_dom_as_subset(A,B,C),powerset(A)) ) ).

fof(dt_k4_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => element(subset_union2(A,B,C),powerset(A)) ) ).

fof(dt_k4_tarski,axiom,
    $true ).

fof(dt_k5_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => element(relation_rng_as_subset(A,B,C),powerset(B)) ) ).

fof(dt_k5_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => element(subset_intersection2(A,B,C),powerset(A)) ) ).

fof(dt_k9_filter_1,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => relation(relation_of_lattice(A)) ) ).

fof(dt_l1_lattices,axiom,
    ! [A] :
      ( meet_semilatt_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l1_struct_0,axiom,
    $true ).

fof(dt_l2_lattices,axiom,
    ! [A] :
      ( join_semilatt_str(A)
     => one_sorted_str(A) ) ).

fof(dt_l3_lattices,axiom,
    ! [A] :
      ( latt_str(A)
     => ( meet_semilatt_str(A)
        & join_semilatt_str(A) ) ) ).

fof(dt_m1_relset_1,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_m2_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
     => element(C,powerset(cartesian_product2(A,B))) ) ).

fof(dt_u1_lattices,axiom,
    ! [A] :
      ( meet_semilatt_str(A)
     => ( function(the_L_meet(A))
        & quasi_total(the_L_meet(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A))
        & relation_of2_as_subset(the_L_meet(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A)) ) ) ).

fof(dt_u1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => relation_of2_as_subset(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ).

fof(dt_u1_struct_0,axiom,
    $true ).

fof(dt_u2_lattices,axiom,
    ! [A] :
      ( join_semilatt_str(A)
     => ( function(the_L_join(A))
        & quasi_total(the_L_join(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A))
        & relation_of2_as_subset(the_L_join(A),cartesian_product2(the_carrier(A),the_carrier(A)),the_carrier(A)) ) ) ).

fof(existence_l1_lattices,axiom,
    ? [A] : meet_semilatt_str(A) ).

fof(existence_l1_orders_2,axiom,
    ? [A] : rel_str(A) ).

fof(existence_l1_struct_0,axiom,
    ? [A] : one_sorted_str(A) ).

fof(existence_l2_lattices,axiom,
    ? [A] : join_semilatt_str(A) ).

fof(existence_l3_lattices,axiom,
    ? [A] : latt_str(A) ).

fof(existence_m1_relset_1,axiom,
    ! [A,B] :
    ? [C] : relation_of2(C,A,B) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(existence_m2_relset_1,axiom,
    ! [A,B] :
    ? [C] : relation_of2_as_subset(C,A,B) ).

fof(fc1_knaster,axiom,
    ! [A] :
      ( ~ empty_carrier(boole_lattice(A))
      & strict_latt_str(boole_lattice(A))
      & join_commutative(boole_lattice(A))
      & join_associative(boole_lattice(A))
      & meet_commutative(boole_lattice(A))
      & meet_associative(boole_lattice(A))
      & meet_absorbing(boole_lattice(A))
      & join_absorbing(boole_lattice(A))
      & lattice(boole_lattice(A))
      & distributive_lattstr(boole_lattice(A))
      & modular_lattstr(boole_lattice(A))
      & lower_bounded_semilattstr(boole_lattice(A))
      & upper_bounded_semilattstr(boole_lattice(A))
      & bounded_lattstr(boole_lattice(A))
      & complemented_lattstr(boole_lattice(A))
      & boolean_lattstr(boole_lattice(A))
      & complete_latt_str(boole_lattice(A)) ) ).

fof(fc1_lattice3,axiom,
    ! [A] :
      ( ~ empty_carrier(boole_lattice(A))
      & strict_latt_str(boole_lattice(A)) ) ).

fof(fc1_orders_2,axiom,
    ! [A,B] :
      ( ( ~ empty(A)
        & relation_of2(B,A,A) )
     => ( ~ empty_carrier(rel_str_of(A,B))
        & strict_rel_str(rel_str_of(A,B)) ) ) ).

fof(fc1_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ~ empty(the_carrier(A)) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ empty(powerset(A)) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(fc1_yellow_0,axiom,
    ! [A,B] :
      ( relation_of2(B,singleton(A),singleton(A))
     => ( ~ empty_carrier(rel_str_of(singleton(A),B))
        & strict_rel_str(rel_str_of(singleton(A),B))
        & trivial_carrier(rel_str_of(singleton(A),B)) ) ) ).

fof(fc1_yellow_1,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ( ~ empty_carrier(poset_of_lattice(A))
        & strict_rel_str(poset_of_lattice(A))
        & reflexive_relstr(poset_of_lattice(A))
        & transitive_relstr(poset_of_lattice(A))
        & antisymmetric_relstr(poset_of_lattice(A))
        & with_suprema_relstr(poset_of_lattice(A))
        & with_infima_relstr(poset_of_lattice(A)) ) ) ).

fof(fc2_lattice3,axiom,
    ! [A] :
      ( ~ empty_carrier(boole_lattice(A))
      & strict_latt_str(boole_lattice(A))
      & join_commutative(boole_lattice(A))
      & join_associative(boole_lattice(A))
      & meet_commutative(boole_lattice(A))
      & meet_associative(boole_lattice(A))
      & meet_absorbing(boole_lattice(A))
      & join_absorbing(boole_lattice(A))
      & lattice(boole_lattice(A)) ) ).

fof(fc2_orders_2,axiom,
    ! [A] :
      ( ( reflexive_relstr(A)
        & transitive_relstr(A)
        & antisymmetric_relstr(A)
        & rel_str(A) )
     => ( relation(the_InternalRel(A))
        & reflexive(the_InternalRel(A))
        & antisymmetric(the_InternalRel(A))
        & transitive(the_InternalRel(A))
        & v1_partfun1(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ) ).

fof(fc2_subset_1,axiom,
    ! [A] : ~ empty(singleton(A)) ).

fof(fc2_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(A,B)) ) ).

fof(fc2_yellow_1,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & upper_bounded_semilattstr(A)
        & latt_str(A) )
     => ( ~ empty_carrier(poset_of_lattice(A))
        & strict_rel_str(poset_of_lattice(A))
        & reflexive_relstr(poset_of_lattice(A))
        & transitive_relstr(poset_of_lattice(A))
        & antisymmetric_relstr(poset_of_lattice(A))
        & upper_bounded_relstr(poset_of_lattice(A))
        & with_suprema_relstr(poset_of_lattice(A))
        & with_infima_relstr(poset_of_lattice(A)) ) ) ).

fof(fc3_lattice3,axiom,
    ! [A] :
      ( ~ empty_carrier(boole_lattice(A))
      & strict_latt_str(boole_lattice(A))
      & join_commutative(boole_lattice(A))
      & join_associative(boole_lattice(A))
      & meet_commutative(boole_lattice(A))
      & meet_associative(boole_lattice(A))
      & meet_absorbing(boole_lattice(A))
      & join_absorbing(boole_lattice(A))
      & lattice(boole_lattice(A))
      & distributive_lattstr(boole_lattice(A))
      & modular_lattstr(boole_lattice(A))
      & lower_bounded_semilattstr(boole_lattice(A))
      & upper_bounded_semilattstr(boole_lattice(A))
      & bounded_lattstr(boole_lattice(A))
      & complemented_lattstr(boole_lattice(A))
      & boolean_lattstr(boole_lattice(A)) ) ).

fof(fc3_lattices,axiom,
    ! [A,B,C] :
      ( ( ~ empty(A)
        & function(B)
        & quasi_total(B,cartesian_product2(A,A),A)
        & relation_of2(B,cartesian_product2(A,A),A)
        & function(C)
        & quasi_total(C,cartesian_product2(A,A),A)
        & relation_of2(C,cartesian_product2(A,A),A) )
     => ( ~ empty_carrier(latt_str_of(A,B,C))
        & strict_latt_str(latt_str_of(A,B,C)) ) ) ).

fof(fc3_orders_2,axiom,
    ! [A,B] :
      ( ( reflexive(B)
        & antisymmetric(B)
        & transitive(B)
        & v1_partfun1(B,A,A)
        & relation_of2(B,A,A) )
     => ( strict_rel_str(rel_str_of(A,B))
        & reflexive_relstr(rel_str_of(A,B))
        & transitive_relstr(rel_str_of(A,B))
        & antisymmetric_relstr(rel_str_of(A,B)) ) ) ).

fof(fc3_subset_1,axiom,
    ! [A,B] : ~ empty(unordered_pair(A,B)) ).

fof(fc3_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(B,A)) ) ).

fof(fc3_yellow_1,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & lower_bounded_semilattstr(A)
        & latt_str(A) )
     => ( ~ empty_carrier(poset_of_lattice(A))
        & strict_rel_str(poset_of_lattice(A))
        & reflexive_relstr(poset_of_lattice(A))
        & transitive_relstr(poset_of_lattice(A))
        & antisymmetric_relstr(poset_of_lattice(A))
        & lower_bounded_relstr(poset_of_lattice(A))
        & with_suprema_relstr(poset_of_lattice(A))
        & with_infima_relstr(poset_of_lattice(A)) ) ) ).

fof(fc4_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => ( ~ empty_carrier(poset_of_lattice(A))
        & strict_rel_str(poset_of_lattice(A))
        & reflexive_relstr(poset_of_lattice(A))
        & transitive_relstr(poset_of_lattice(A))
        & antisymmetric_relstr(poset_of_lattice(A)) ) ) ).

fof(fc4_subset_1,axiom,
    ! [A,B] :
      ( ( ~ empty(A)
        & ~ empty(B) )
     => ~ empty(cartesian_product2(A,B)) ) ).

fof(fc4_yellow_1,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & complete_latt_str(A)
        & latt_str(A) )
     => ( ~ empty_carrier(poset_of_lattice(A))
        & strict_rel_str(poset_of_lattice(A))
        & reflexive_relstr(poset_of_lattice(A))
        & transitive_relstr(poset_of_lattice(A))
        & antisymmetric_relstr(poset_of_lattice(A))
        & lower_bounded_relstr(poset_of_lattice(A))
        & upper_bounded_relstr(poset_of_lattice(A))
        & bounded_relstr(poset_of_lattice(A))
        & with_suprema_relstr(poset_of_lattice(A))
        & with_infima_relstr(poset_of_lattice(A))
        & complete_relstr(poset_of_lattice(A)) ) ) ).

fof(fc5_yellow_1,axiom,
    ! [A] :
      ( strict_rel_str(incl_POSet(A))
      & reflexive_relstr(incl_POSet(A))
      & transitive_relstr(incl_POSet(A))
      & antisymmetric_relstr(incl_POSet(A)) ) ).

fof(fc6_yellow_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ( ~ empty_carrier(incl_POSet(A))
        & strict_rel_str(incl_POSet(A))
        & reflexive_relstr(incl_POSet(A))
        & transitive_relstr(incl_POSet(A))
        & antisymmetric_relstr(incl_POSet(A)) ) ) ).

fof(fc7_yellow_1,axiom,
    ! [A] :
      ( ~ empty_carrier(boole_POSet(A))
      & strict_rel_str(boole_POSet(A))
      & reflexive_relstr(boole_POSet(A))
      & transitive_relstr(boole_POSet(A))
      & antisymmetric_relstr(boole_POSet(A)) ) ).

fof(fc8_yellow_1,axiom,
    ! [A] :
      ( ~ empty_carrier(boole_POSet(A))
      & strict_rel_str(boole_POSet(A))
      & reflexive_relstr(boole_POSet(A))
      & transitive_relstr(boole_POSet(A))
      & antisymmetric_relstr(boole_POSet(A))
      & lower_bounded_relstr(boole_POSet(A))
      & upper_bounded_relstr(boole_POSet(A))
      & bounded_relstr(boole_POSet(A))
      & with_suprema_relstr(boole_POSet(A))
      & with_infima_relstr(boole_POSet(A))
      & complete_relstr(boole_POSet(A)) ) ).

fof(free_g1_orders_2,axiom,
    ! [A,B] :
      ( relation_of2(B,A,A)
     => ! [C,D] :
          ( rel_str_of(A,B) = rel_str_of(C,D)
         => ( A = C
            & B = D ) ) ) ).

fof(free_g3_lattices,axiom,
    ! [A,B,C] :
      ( ( function(B)
        & quasi_total(B,cartesian_product2(A,A),A)
        & relation_of2(B,cartesian_product2(A,A),A)
        & function(C)
        & quasi_total(C,cartesian_product2(A,A),A)
        & relation_of2(C,cartesian_product2(A,A),A) )
     => ! [D,E,F] :
          ( latt_str_of(A,B,C) = latt_str_of(D,E,F)
         => ( A = D
            & B = E
            & C = F ) ) ) ).

fof(idempotence_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,A) = A ).

fof(idempotence_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,A) = A ).

fof(idempotence_k4_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_union2(A,B,B) = B ) ).

fof(idempotence_k5_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_intersection2(A,B,B) = B ) ).

fof(rc10_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & ~ empty_carrier(A)
      & strict_latt_str(A)
      & join_commutative(A)
      & join_associative(A)
      & meet_commutative(A)
      & meet_associative(A)
      & meet_absorbing(A)
      & join_absorbing(A)
      & lattice(A)
      & distributive_lattstr(A)
      & modular_lattstr(A)
      & lower_bounded_semilattstr(A)
      & upper_bounded_semilattstr(A) ) ).

fof(rc11_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & ~ empty_carrier(A)
      & strict_latt_str(A)
      & join_commutative(A)
      & join_associative(A)
      & meet_commutative(A)
      & meet_associative(A)
      & meet_absorbing(A)
      & join_absorbing(A)
      & lattice(A)
      & lower_bounded_semilattstr(A)
      & upper_bounded_semilattstr(A)
      & bounded_lattstr(A) ) ).

fof(rc12_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & ~ empty_carrier(A)
      & strict_latt_str(A)
      & join_commutative(A)
      & join_associative(A)
      & meet_commutative(A)
      & meet_associative(A)
      & meet_absorbing(A)
      & join_absorbing(A)
      & lattice(A)
      & lower_bounded_semilattstr(A)
      & upper_bounded_semilattstr(A)
      & bounded_lattstr(A)
      & complemented_lattstr(A) ) ).

fof(rc13_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & ~ empty_carrier(A)
      & strict_latt_str(A)
      & join_commutative(A)
      & join_associative(A)
      & meet_commutative(A)
      & meet_associative(A)
      & meet_absorbing(A)
      & join_absorbing(A)
      & lattice(A)
      & distributive_lattstr(A)
      & lower_bounded_semilattstr(A)
      & upper_bounded_semilattstr(A)
      & bounded_lattstr(A)
      & complemented_lattstr(A)
      & boolean_lattstr(A) ) ).

fof(rc1_lattice3,axiom,
    ? [A] :
      ( rel_str(A)
      & ~ empty_carrier(A)
      & strict_rel_str(A)
      & reflexive_relstr(A)
      & transitive_relstr(A)
      & antisymmetric_relstr(A)
      & complete_relstr(A) ) ).

fof(rc1_orders_2,axiom,
    ? [A] :
      ( rel_str(A)
      & strict_rel_str(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc1_yellow_0,axiom,
    ? [A] :
      ( rel_str(A)
      & ~ empty_carrier(A)
      & strict_rel_str(A)
      & reflexive_relstr(A)
      & transitive_relstr(A)
      & antisymmetric_relstr(A)
      & with_suprema_relstr(A)
      & with_infima_relstr(A)
      & complete_relstr(A)
      & trivial_carrier(A) ) ).

fof(rc2_lattice3,axiom,
    ? [A] :
      ( rel_str(A)
      & ~ empty_carrier(A)
      & strict_rel_str(A)
      & reflexive_relstr(A)
      & transitive_relstr(A)
      & antisymmetric_relstr(A)
      & with_suprema_relstr(A)
      & with_infima_relstr(A)
      & complete_relstr(A) ) ).

fof(rc2_orders_2,axiom,
    ? [A] :
      ( rel_str(A)
      & ~ empty_carrier(A)
      & strict_rel_str(A)
      & reflexive_relstr(A)
      & transitive_relstr(A)
      & antisymmetric_relstr(A) ) ).

fof(rc2_partfun1,axiom,
    ! [A,B] :
    ? [C] :
      ( relation_of2(C,A,B)
      & relation(C)
      & function(C) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(A))
      & empty(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(rc2_yellow_0,axiom,
    ? [A] :
      ( rel_str(A)
      & ~ empty_carrier(A)
      & reflexive_relstr(A)
      & transitive_relstr(A)
      & antisymmetric_relstr(A)
      & with_suprema_relstr(A)
      & with_infima_relstr(A)
      & complete_relstr(A)
      & lower_bounded_relstr(A)
      & upper_bounded_relstr(A)
      & bounded_relstr(A) ) ).

fof(rc3_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & strict_latt_str(A) ) ).

fof(rc3_struct_0,axiom,
    ? [A] :
      ( one_sorted_str(A)
      & ~ empty_carrier(A) ) ).

fof(rc5_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & ~ empty(B) ) ) ).

fof(rc6_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & ~ empty_carrier(A)
      & strict_latt_str(A) ) ).

fof(rc9_lattices,axiom,
    ? [A] :
      ( latt_str(A)
      & ~ empty_carrier(A)
      & strict_latt_str(A)
      & join_commutative(A)
      & join_associative(A)
      & meet_commutative(A)
      & meet_associative(A)
      & meet_absorbing(A)
      & join_absorbing(A)
      & lattice(A) ) ).

fof(redefinition_k1_yellow_1,axiom,
    ! [A] : inclusion_order(A) = inclusion_relation(A) ).

fof(redefinition_k2_lattice3,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & lattice(A)
        & latt_str(A) )
     => k2_lattice3(A) = relation_of_lattice(A) ) ).

fof(redefinition_k4_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => relation_dom_as_subset(A,B,C) = relation_dom(C) ) ).

fof(redefinition_k4_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_union2(A,B,C) = set_union2(B,C) ) ).

fof(redefinition_k5_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2(C,A,B)
     => relation_rng_as_subset(A,B,C) = relation_rng(C) ) ).

fof(redefinition_k5_subset_1,axiom,
    ! [A,B,C] :
      ( ( element(B,powerset(A))
        & element(C,powerset(A)) )
     => subset_intersection2(A,B,C) = set_intersection2(B,C) ) ).

fof(redefinition_m2_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
    <=> relation_of2(C,A,B) ) ).

fof(redefinition_r3_orders_2,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & reflexive_relstr(A)
        & rel_str(A)
        & element(B,the_carrier(A))
        & element(C,the_carrier(A)) )
     => ( related_reflexive(A,B,C)
      <=> related(A,B,C) ) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(reflexivity_r3_orders_2,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & reflexive_relstr(A)
        & rel_str(A)
        & element(B,the_carrier(A))
        & element(C,the_carrier(A)) )
     => related_reflexive(A,B,B) ) ).

fof(t1_boole,axiom,
    ! [A] : set_union2(A,empty_set) = A ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t22_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,B,A)
     => ( ! [D] :
            ~ ( in(D,B)
              & ! [E] : ~ in(ordered_pair(D,E),C) )
      <=> relation_dom_as_subset(B,A,C) = B ) ) ).

fof(t23_relset_1,axiom,
    ! [A,B,C] :
      ( relation_of2_as_subset(C,A,B)
     => ( ! [D] :
            ~ ( in(D,B)
              & ! [E] : ~ in(ordered_pair(E,D),C) )
      <=> relation_rng_as_subset(A,B,C) = B ) ) ).

fof(t2_boole,axiom,
    ! [A] : set_intersection2(A,empty_set) = empty_set ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t2_yellow_1,axiom,
    ! [A,B] :
      ( element(B,the_carrier(boole_POSet(A)))
     => ! [C] :
          ( element(C,the_carrier(boole_POSet(A)))
         => ( related_reflexive(boole_POSet(A),B,C)
          <=> subset(B,C) ) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t4_yellow_1,conjecture,
    ! [A] : boole_POSet(A) = incl_POSet(powerset(A)) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

%------------------------------------------------------------------------------