TPTP Problem File: SEU365+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU365+1 : TPTP v9.0.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem s2_finset_1__e11_2_1__waybel_0
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-s2_finset_1__e11_2_1__waybel_0 [Urb07]

% Status   : Theorem
% Rating   : 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v3.3.0
% Syntax   : Number of formulae    :   81 (  22 unt;   0 def)
%            Number of atoms       :  239 (  13 equ)
%            Maximal formula atoms :   21 (   2 avg)
%            Number of connectives :  192 (  34   ~;   1   |; 111   &)
%                                         (   8 <=>;  38  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   20 (  18 usr;   1 prp; 0-3 aty)
%            Number of functors    :    6 (   6 usr;   1 con; 0-2 aty)
%            Number of variables   :  125 (  96   !;  29   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(s2_finset_1__e11_2_1__waybel_0,conjecture,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & transitive_relstr(A)
        & rel_str(A)
        & element(B,powerset(the_carrier(A)))
        & finite(C)
        & element(C,powerset(B)) )
     => ( ( finite(C)
          & ? [D] :
              ( element(D,the_carrier(A))
              & in(D,B)
              & relstr_set_smaller(A,empty_set,D) )
          & ! [E,F] :
              ( ( in(E,C)
                & subset(F,C)
                & ? [G] :
                    ( element(G,the_carrier(A))
                    & in(G,B)
                    & relstr_set_smaller(A,F,G) ) )
             => ? [H] :
                  ( element(H,the_carrier(A))
                  & in(H,B)
                  & relstr_set_smaller(A,set_union2(F,singleton(E)),H) ) ) )
       => ? [I] :
            ( element(I,the_carrier(A))
            & in(I,B)
            & relstr_set_smaller(A,C,I) ) ) ) ).

fof(dt_l1_struct_0,axiom,
    $true ).

fof(rc3_struct_0,axiom,
    ? [A] :
      ( one_sorted_str(A)
      & ~ empty_carrier(A) ) ).

fof(fc1_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ~ empty(the_carrier(A)) ) ).

fof(rc5_struct_0,axiom,
    ! [A] :
      ( ( ~ empty_carrier(A)
        & one_sorted_str(A) )
     => ? [B] :
          ( element(B,powerset(the_carrier(A)))
          & ~ empty(B) ) ) ).

fof(rc1_finset_1,axiom,
    ? [A] :
      ( ~ empty(A)
      & finite(A) ) ).

fof(cc1_finset_1,axiom,
    ! [A] :
      ( empty(A)
     => finite(A) ) ).

fof(rc3_finset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B)
          & finite(B) ) ) ).

fof(rc4_finset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B)
          & finite(B) ) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B) ) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(A))
      & empty(B) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : empty(A) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ empty(A) ).

fof(fc2_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(A,B)) ) ).

fof(fc3_xboole_0,axiom,
    ! [A,B] :
      ( ~ empty(A)
     => ~ empty(set_union2(B,A)) ) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,B) = set_union2(B,A) ).

fof(idempotence_k2_xboole_0,axiom,
    ! [A,B] : set_union2(A,A) = A ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(dt_k1_tarski,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_xboole_0,axiom,
    $true ).

fof(dt_l1_orders_2,axiom,
    ! [A] :
      ( rel_str(A)
     => one_sorted_str(A) ) ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_u1_struct_0,axiom,
    $true ).

fof(fc1_finset_1,axiom,
    ! [A] :
      ( ~ empty(singleton(A))
      & finite(singleton(A)) ) ).

fof(cc2_finset_1,axiom,
    ! [A] :
      ( finite(A)
     => ! [B] :
          ( element(B,powerset(A))
         => finite(B) ) ) ).

fof(fc9_finset_1,axiom,
    ! [A,B] :
      ( ( finite(A)
        & finite(B) )
     => finite(set_union2(A,B)) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ empty(powerset(A)) ).

fof(fc2_subset_1,axiom,
    ! [A] : ~ empty(singleton(A)) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set) ).

fof(s1_xboole_0__e11_2_1__waybel_0__1,axiom,
    ! [A,B,C] :
      ( ( ~ empty_carrier(A)
        & transitive_relstr(A)
        & rel_str(A)
        & element(B,powerset(the_carrier(A)))
        & finite(C)
        & element(C,powerset(B)) )
     => ? [D] :
        ! [E] :
          ( in(E,D)
        <=> ( in(E,powerset(C))
            & ? [F] :
                ( F = E
                & ? [G] :
                    ( element(G,the_carrier(A))
                    & in(G,B)
                    & relstr_set_smaller(A,F,G) ) ) ) ) ) ).

fof(cc1_arytm_3,axiom,
    ! [A] :
      ( ordinal(A)
     => ! [B] :
          ( element(B,A)
         => ( epsilon_transitive(B)
            & epsilon_connected(B)
            & ordinal(B) ) ) ) ).

fof(cc1_funct_1,axiom,
    ! [A] :
      ( empty(A)
     => function(A) ) ).

fof(cc1_ordinal1,axiom,
    ! [A] :
      ( ordinal(A)
     => ( epsilon_transitive(A)
        & epsilon_connected(A) ) ) ).

fof(cc1_relat_1,axiom,
    ! [A] :
      ( empty(A)
     => relation(A) ) ).

fof(cc2_arytm_3,axiom,
    ! [A] :
      ( ( empty(A)
        & ordinal(A) )
     => ( epsilon_transitive(A)
        & epsilon_connected(A)
        & ordinal(A)
        & natural(A) ) ) ).

fof(cc2_funct_1,axiom,
    ! [A] :
      ( ( relation(A)
        & empty(A)
        & function(A) )
     => ( relation(A)
        & function(A)
        & one_to_one(A) ) ) ).

fof(cc2_ordinal1,axiom,
    ! [A] :
      ( ( epsilon_transitive(A)
        & epsilon_connected(A) )
     => ordinal(A) ) ).

fof(cc3_ordinal1,axiom,
    ! [A] :
      ( empty(A)
     => ( epsilon_transitive(A)
        & epsilon_connected(A)
        & ordinal(A) ) ) ).

fof(d10_xboole_0,axiom,
    ! [A,B] :
      ( A = B
    <=> ( subset(A,B)
        & subset(B,A) ) ) ).

fof(d3_tarski,axiom,
    ! [A,B] :
      ( subset(A,B)
    <=> ! [C] :
          ( in(C,A)
         => in(C,B) ) ) ).

fof(d4_xboole_0,axiom,
    ! [A,B,C] :
      ( C = set_difference(A,B)
    <=> ! [D] :
          ( in(D,C)
        <=> ( in(D,A)
            & ~ in(D,B) ) ) ) ).

fof(dt_k4_xboole_0,axiom,
    $true ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(fc12_finset_1,axiom,
    ! [A,B] :
      ( finite(A)
     => finite(set_difference(A,B)) ) ).

fof(fc12_relat_1,axiom,
    ( empty(empty_set)
    & relation(empty_set)
    & relation_empty_yielding(empty_set) ) ).

fof(fc2_ordinal1,axiom,
    ( relation(empty_set)
    & relation_empty_yielding(empty_set)
    & function(empty_set)
    & one_to_one(empty_set)
    & empty(empty_set)
    & epsilon_transitive(empty_set)
    & epsilon_connected(empty_set)
    & ordinal(empty_set) ) ).

fof(fc2_relat_1,axiom,
    ! [A,B] :
      ( ( relation(A)
        & relation(B) )
     => relation(set_union2(A,B)) ) ).

fof(fc3_relat_1,axiom,
    ! [A,B] :
      ( ( relation(A)
        & relation(B) )
     => relation(set_difference(A,B)) ) ).

fof(fc4_relat_1,axiom,
    ( empty(empty_set)
    & relation(empty_set) ) ).

fof(rc1_arytm_3,axiom,
    ? [A] :
      ( ~ empty(A)
      & epsilon_transitive(A)
      & epsilon_connected(A)
      & ordinal(A)
      & natural(A) ) ).

fof(rc1_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A) ) ).

fof(rc1_ordinal1,axiom,
    ? [A] :
      ( epsilon_transitive(A)
      & epsilon_connected(A)
      & ordinal(A) ) ).

fof(rc1_relat_1,axiom,
    ? [A] :
      ( empty(A)
      & relation(A) ) ).

fof(rc2_finset_1,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(A))
      & empty(B)
      & relation(B)
      & function(B)
      & one_to_one(B)
      & epsilon_transitive(B)
      & epsilon_connected(B)
      & ordinal(B)
      & natural(B)
      & finite(B) ) ).

fof(rc2_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & empty(A)
      & function(A) ) ).

fof(rc2_ordinal1,axiom,
    ? [A] :
      ( relation(A)
      & function(A)
      & one_to_one(A)
      & empty(A)
      & epsilon_transitive(A)
      & epsilon_connected(A)
      & ordinal(A) ) ).

fof(rc2_relat_1,axiom,
    ? [A] :
      ( ~ empty(A)
      & relation(A) ) ).

fof(rc3_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & function(A)
      & one_to_one(A) ) ).

fof(rc3_ordinal1,axiom,
    ? [A] :
      ( ~ empty(A)
      & epsilon_transitive(A)
      & epsilon_connected(A)
      & ordinal(A) ) ).

fof(rc3_relat_1,axiom,
    ? [A] :
      ( relation(A)
      & relation_empty_yielding(A) ) ).

fof(rc4_funct_1,axiom,
    ? [A] :
      ( relation(A)
      & relation_empty_yielding(A)
      & function(A) ) ).

fof(t18_finset_1,axiom,
    ! [A] :
      ( finite(A)
     => ! [B] :
          ( element(B,powerset(powerset(A)))
         => ~ ( B != empty_set
              & ! [C] :
                  ~ ( in(C,B)
                    & ! [D] :
                        ( ( in(D,B)
                          & subset(C,D) )
                       => D = C ) ) ) ) ) ).

fof(t1_boole,axiom,
    ! [A] : set_union2(A,empty_set) = A ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t2_xboole_1,axiom,
    ! [A] : subset(empty_set,A) ).

fof(t37_xboole_1,axiom,
    ! [A,B] :
      ( set_difference(A,B) = empty_set
    <=> subset(A,B) ) ).

fof(t37_zfmisc_1,axiom,
    ! [A,B] :
      ( subset(singleton(A),B)
    <=> in(A,B) ) ).

fof(t3_boole,axiom,
    ! [A] : set_difference(A,empty_set) = A ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t4_boole,axiom,
    ! [A] : set_difference(empty_set,A) = empty_set ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t7_xboole_1,axiom,
    ! [A,B] : subset(A,set_union2(A,B)) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

fof(t8_xboole_1,axiom,
    ! [A,B,C] :
      ( ( subset(A,B)
        & subset(C,B) )
     => subset(set_union2(A,C),B) ) ).

%------------------------------------------------------------------------------