TPTP Problem File: SEU361+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU361+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t44_yellow_0
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t44_yellow_0 [Urb07]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.11 v8.1.0, 0.06 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.1.0, 0.10 v6.0.0, 0.04 v5.5.0, 0.07 v5.3.0, 0.11 v5.2.0, 0.00 v5.0.0, 0.08 v4.1.0, 0.09 v4.0.0, 0.12 v3.7.0, 0.10 v3.5.0, 0.11 v3.3.0
% Syntax : Number of formulae : 28 ( 10 unt; 0 def)
% Number of atoms : 72 ( 5 equ)
% Maximal formula atoms : 15 ( 2 avg)
% Number of connectives : 55 ( 11 ~; 1 |; 20 &)
% ( 0 <=>; 23 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 16 ( 14 usr; 1 prp; 0-3 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 36 ( 29 !; 7 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( empty(A)
=> finite(A) ) ).
fof(d11_yellow_0,axiom,
! [A] :
( rel_str(A)
=> bottom_of_relstr(A) = join_on_relstr(A,empty_set) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_yellow_0,axiom,
! [A,B] :
( rel_str(A)
=> element(join_on_relstr(A,B),the_carrier(A)) ) ).
fof(dt_k3_yellow_0,axiom,
! [A] :
( rel_str(A)
=> element(bottom_of_relstr(A),the_carrier(A)) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : rel_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ~ empty(the_carrier(A)) ) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ empty(A)
& finite(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_struct_0,axiom,
? [A] :
( one_sorted_str(A)
& ~ empty_carrier(A) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t30_yellow_0,axiom,
! [A] :
( ( antisymmetric_relstr(A)
& rel_str(A) )
=> ! [B] :
( element(B,the_carrier(A))
=> ! [C] :
( ( ( B = join_on_relstr(A,C)
& ex_sup_of_relstr_set(A,C) )
=> ( relstr_set_smaller(A,C,B)
& ! [D] :
( element(D,the_carrier(A))
=> ( relstr_set_smaller(A,C,D)
=> related(A,B,D) ) ) ) )
& ( ( relstr_set_smaller(A,C,B)
& ! [D] :
( element(D,the_carrier(A))
=> ( relstr_set_smaller(A,C,D)
=> related(A,B,D) ) ) )
=> ( B = join_on_relstr(A,C)
& ex_sup_of_relstr_set(A,C) ) ) ) ) ) ).
fof(t42_yellow_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& antisymmetric_relstr(A)
& lower_bounded_relstr(A)
& rel_str(A) )
=> ( ex_sup_of_relstr_set(A,empty_set)
& ex_inf_of_relstr_set(A,the_carrier(A)) ) ) ).
fof(t44_yellow_0,conjecture,
! [A] :
( ( ~ empty_carrier(A)
& antisymmetric_relstr(A)
& lower_bounded_relstr(A)
& rel_str(A) )
=> ! [B] :
( element(B,the_carrier(A))
=> related(A,bottom_of_relstr(A),B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t6_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ! [B] :
( element(B,the_carrier(A))
=> ( relstr_set_smaller(A,empty_set,B)
& relstr_element_smaller(A,empty_set,B) ) ) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------