TPTP Problem File: SEU359+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU359+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t30_yellow_0
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t30_yellow_0 [Urb07]
% Status : Theorem
% Rating : 0.18 v9.0.0, 0.19 v8.2.0, 0.17 v8.1.0, 0.11 v7.5.0, 0.12 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.04 v6.2.0, 0.08 v6.1.0, 0.13 v6.0.0, 0.04 v5.5.0, 0.15 v5.4.0, 0.21 v5.3.0, 0.22 v5.2.0, 0.10 v5.1.0, 0.14 v5.0.0, 0.12 v4.1.0, 0.17 v4.0.1, 0.22 v4.0.0, 0.25 v3.7.0, 0.20 v3.5.0, 0.21 v3.4.0, 0.32 v3.3.0
% Syntax : Number of formulae : 11 ( 6 unt; 0 def)
% Number of atoms : 41 ( 3 equ)
% Maximal formula atoms : 15 ( 3 avg)
% Number of connectives : 30 ( 0 ~; 0 |; 10 &)
% ( 2 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 7 usr; 1 prp; 0-3 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 20 ( 16 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(d9_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ! [B,C] :
( element(C,the_carrier(A))
=> ( ex_sup_of_relstr_set(A,B)
=> ( C = join_on_relstr(A,B)
<=> ( relstr_set_smaller(A,B,C)
& ! [D] :
( element(D,the_carrier(A))
=> ( relstr_set_smaller(A,B,D)
=> related(A,C,D) ) ) ) ) ) ) ) ).
fof(dt_k1_yellow_0,axiom,
! [A,B] :
( rel_str(A)
=> element(join_on_relstr(A,B),the_carrier(A)) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : rel_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(t15_yellow_0,axiom,
! [A] :
( ( antisymmetric_relstr(A)
& rel_str(A) )
=> ! [B] :
( ex_sup_of_relstr_set(A,B)
<=> ? [C] :
( element(C,the_carrier(A))
& relstr_set_smaller(A,B,C)
& ! [D] :
( element(D,the_carrier(A))
=> ( relstr_set_smaller(A,B,D)
=> related(A,C,D) ) ) ) ) ) ).
fof(t30_yellow_0,conjecture,
! [A] :
( ( antisymmetric_relstr(A)
& rel_str(A) )
=> ! [B] :
( element(B,the_carrier(A))
=> ! [C] :
( ( ( B = join_on_relstr(A,C)
& ex_sup_of_relstr_set(A,C) )
=> ( relstr_set_smaller(A,C,B)
& ! [D] :
( element(D,the_carrier(A))
=> ( relstr_set_smaller(A,C,D)
=> related(A,B,D) ) ) ) )
& ( ( relstr_set_smaller(A,C,B)
& ! [D] :
( element(D,the_carrier(A))
=> ( relstr_set_smaller(A,C,D)
=> related(A,B,D) ) ) )
=> ( B = join_on_relstr(A,C)
& ex_sup_of_relstr_set(A,C) ) ) ) ) ) ).
%------------------------------------------------------------------------------