TPTP Problem File: SEU357+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU357+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t16_yellow_0
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t16_yellow_0 [Urb07]
% Status : Theorem
% Rating : 0.21 v9.0.0, 0.19 v8.2.0, 0.17 v8.1.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.10 v7.3.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.1.0, 0.13 v6.0.0, 0.09 v5.5.0, 0.19 v5.4.0, 0.25 v5.3.0, 0.30 v5.2.0, 0.15 v5.1.0, 0.19 v5.0.0, 0.17 v4.1.0, 0.22 v4.0.0, 0.25 v3.7.0, 0.20 v3.5.0, 0.21 v3.4.0, 0.32 v3.3.0
% Syntax : Number of formulae : 10 ( 6 unt; 0 def)
% Number of atoms : 36 ( 2 equ)
% Maximal formula atoms : 13 ( 3 avg)
% Number of connectives : 26 ( 0 ~; 0 |; 9 &)
% ( 2 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 7 usr; 1 prp; 0-3 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 18 ( 13 !; 5 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(d8_yellow_0,axiom,
! [A] :
( rel_str(A)
=> ! [B] :
( ex_inf_of_relstr_set(A,B)
<=> ? [C] :
( element(C,the_carrier(A))
& relstr_element_smaller(A,B,C)
& ! [D] :
( element(D,the_carrier(A))
=> ( relstr_element_smaller(A,B,D)
=> related(A,D,C) ) )
& ! [D] :
( element(D,the_carrier(A))
=> ( ( relstr_element_smaller(A,B,D)
& ! [E] :
( element(E,the_carrier(A))
=> ( relstr_element_smaller(A,B,E)
=> related(A,E,D) ) ) )
=> D = C ) ) ) ) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : rel_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(t16_yellow_0,conjecture,
! [A] :
( ( antisymmetric_relstr(A)
& rel_str(A) )
=> ! [B] :
( ex_inf_of_relstr_set(A,B)
<=> ? [C] :
( element(C,the_carrier(A))
& relstr_element_smaller(A,B,C)
& ! [D] :
( element(D,the_carrier(A))
=> ( relstr_element_smaller(A,B,D)
=> related(A,D,C) ) ) ) ) ) ).
fof(t25_orders_2,axiom,
! [A] :
( ( antisymmetric_relstr(A)
& rel_str(A) )
=> ! [B] :
( element(B,the_carrier(A))
=> ! [C] :
( element(C,the_carrier(A))
=> ( ( related(A,B,C)
& related(A,C,B) )
=> B = C ) ) ) ) ).
%------------------------------------------------------------------------------