TPTP Problem File: SEU355+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU355+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t6_yellow_0
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t6_yellow_0 [Urb07]
% Status : Theorem
% Rating : 0.03 v7.2.0, 0.00 v7.0.0, 0.03 v6.4.0, 0.08 v6.3.0, 0.04 v6.1.0, 0.10 v6.0.0, 0.09 v5.5.0, 0.04 v5.4.0, 0.07 v5.3.0, 0.04 v5.2.0, 0.00 v5.0.0, 0.04 v4.0.0, 0.08 v3.7.0, 0.05 v3.4.0, 0.11 v3.3.0
% Syntax : Number of formulae : 22 ( 10 unt; 0 def)
% Number of atoms : 46 ( 2 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 30 ( 6 ~; 1 |; 5 &)
% ( 2 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 11 ( 9 usr; 1 prp; 0-3 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-1 aty)
% Number of variables : 30 ( 24 !; 6 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( empty(A)
=> finite(A) ) ).
fof(d8_lattice3,axiom,
! [A] :
( rel_str(A)
=> ! [B,C] :
( element(C,the_carrier(A))
=> ( relstr_element_smaller(A,B,C)
<=> ! [D] :
( element(D,the_carrier(A))
=> ( in(D,B)
=> related(A,C,D) ) ) ) ) ) ).
fof(d9_lattice3,axiom,
! [A] :
( rel_str(A)
=> ! [B,C] :
( element(C,the_carrier(A))
=> ( relstr_set_smaller(A,B,C)
<=> ! [D] :
( element(D,the_carrier(A))
=> ( in(D,B)
=> related(A,D,C) ) ) ) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : rel_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ empty(A)
& finite(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t6_yellow_0,conjecture,
! [A] :
( rel_str(A)
=> ! [B] :
( element(B,the_carrier(A))
=> ( relstr_set_smaller(A,empty_set,B)
& relstr_element_smaller(A,empty_set,B) ) ) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------