TPTP Problem File: SEU348+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU348+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t29_lattice3
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t29_lattice3 [Urb07]
% Status : Theorem
% Rating : 0.33 v8.2.0, 0.31 v8.1.0, 0.36 v7.5.0, 0.41 v7.4.0, 0.30 v7.3.0, 0.28 v7.2.0, 0.24 v7.1.0, 0.26 v7.0.0, 0.23 v6.4.0, 0.27 v6.3.0, 0.21 v6.2.0, 0.24 v6.1.0, 0.30 v6.0.0, 0.26 v5.5.0, 0.37 v5.4.0, 0.36 v5.3.0, 0.41 v5.2.0, 0.25 v5.1.0, 0.29 v4.1.0, 0.35 v4.0.1, 0.39 v4.0.0, 0.42 v3.7.0, 0.40 v3.5.0, 0.37 v3.4.0, 0.32 v3.3.0
% Syntax : Number of formulae : 65 ( 20 unt; 0 def)
% Number of atoms : 204 ( 10 equ)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 176 ( 37 ~; 1 |; 90 &)
% ( 4 <=>; 44 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 32 ( 30 usr; 1 prp; 0-3 aty)
% Number of functors : 11 ( 11 usr; 1 con; 0-2 aty)
% Number of variables : 97 ( 81 !; 16 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(abstractness_v1_orders_2,axiom,
! [A] :
( rel_str(A)
=> ( strict_rel_str(A)
=> A = rel_str_of(the_carrier(A),the_InternalRel(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_lattices,axiom,
! [A] :
( latt_str(A)
=> ( ( ~ empty_carrier(A)
& lattice(A) )
=> ( ~ empty_carrier(A)
& join_commutative(A)
& join_associative(A)
& meet_commutative(A)
& meet_associative(A)
& meet_absorbing(A)
& join_absorbing(A) ) ) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(cc2_lattices,axiom,
! [A] :
( latt_str(A)
=> ( ( ~ empty_carrier(A)
& join_commutative(A)
& join_associative(A)
& meet_commutative(A)
& meet_associative(A)
& meet_absorbing(A)
& join_absorbing(A) )
=> ( ~ empty_carrier(A)
& lattice(A) ) ) ) ).
fof(d2_lattice3,axiom,
! [A] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A) )
=> poset_of_lattice(A) = rel_str_of(the_carrier(A),k2_lattice3(A)) ) ).
fof(d3_lattice3,axiom,
! [A] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A) )
=> ! [B] :
( element(B,the_carrier(A))
=> cast_to_el_of_LattPOSet(A,B) = B ) ) ).
fof(d4_lattice3,axiom,
! [A] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A) )
=> ! [B] :
( element(B,the_carrier(poset_of_lattice(A)))
=> cast_to_el_of_lattice(A,B) = B ) ) ).
fof(dt_g1_orders_2,axiom,
! [A,B] :
( relation_of2(B,A,A)
=> ( strict_rel_str(rel_str_of(A,B))
& rel_str(rel_str_of(A,B)) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_lattice3,axiom,
! [A] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A) )
=> ( reflexive(k2_lattice3(A))
& antisymmetric(k2_lattice3(A))
& transitive(k2_lattice3(A))
& v1_partfun1(k2_lattice3(A),the_carrier(A),the_carrier(A))
& relation_of2_as_subset(k2_lattice3(A),the_carrier(A),the_carrier(A)) ) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_lattice3,axiom,
! [A] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A) )
=> ( strict_rel_str(poset_of_lattice(A))
& reflexive_relstr(poset_of_lattice(A))
& transitive_relstr(poset_of_lattice(A))
& antisymmetric_relstr(poset_of_lattice(A))
& rel_str(poset_of_lattice(A)) ) ) ).
fof(dt_k4_lattice3,axiom,
! [A,B] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A)
& element(B,the_carrier(A)) )
=> element(cast_to_el_of_LattPOSet(A,B),the_carrier(poset_of_lattice(A))) ) ).
fof(dt_k5_lattice3,axiom,
! [A,B] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A)
& element(B,the_carrier(poset_of_lattice(A))) )
=> element(cast_to_el_of_lattice(A,B),the_carrier(A)) ) ).
fof(dt_k9_filter_1,axiom,
! [A] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A) )
=> relation(relation_of_lattice(A)) ) ).
fof(dt_l1_lattices,axiom,
! [A] :
( meet_semilatt_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l2_lattices,axiom,
! [A] :
( join_semilatt_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l3_lattices,axiom,
! [A] :
( latt_str(A)
=> ( meet_semilatt_str(A)
& join_semilatt_str(A) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> element(C,powerset(cartesian_product2(A,B))) ) ).
fof(dt_u1_orders_2,axiom,
! [A] :
( rel_str(A)
=> relation_of2_as_subset(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_lattices,axiom,
? [A] : meet_semilatt_str(A) ).
fof(existence_l1_orders_2,axiom,
? [A] : rel_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_l2_lattices,axiom,
? [A] : join_semilatt_str(A) ).
fof(existence_l3_lattices,axiom,
? [A] : latt_str(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : relation_of2(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : relation_of2_as_subset(C,A,B) ).
fof(fc1_orders_2,axiom,
! [A,B] :
( ( ~ empty(A)
& relation_of2(B,A,A) )
=> ( ~ empty_carrier(rel_str_of(A,B))
& strict_rel_str(rel_str_of(A,B)) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ~ empty(the_carrier(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_orders_2,axiom,
! [A] :
( ( reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A)
& rel_str(A) )
=> ( relation(the_InternalRel(A))
& reflexive(the_InternalRel(A))
& antisymmetric(the_InternalRel(A))
& transitive(the_InternalRel(A))
& v1_partfun1(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ) ).
fof(fc3_orders_2,axiom,
! [A,B] :
( ( reflexive(B)
& antisymmetric(B)
& transitive(B)
& v1_partfun1(B,A,A)
& relation_of2(B,A,A) )
=> ( strict_rel_str(rel_str_of(A,B))
& reflexive_relstr(rel_str_of(A,B))
& transitive_relstr(rel_str_of(A,B))
& antisymmetric_relstr(rel_str_of(A,B)) ) ) ).
fof(fc4_lattice3,axiom,
! [A] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A) )
=> ( ~ empty_carrier(poset_of_lattice(A))
& strict_rel_str(poset_of_lattice(A))
& reflexive_relstr(poset_of_lattice(A))
& transitive_relstr(poset_of_lattice(A))
& antisymmetric_relstr(poset_of_lattice(A)) ) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
& ~ empty(B) )
=> ~ empty(cartesian_product2(A,B)) ) ).
fof(free_g1_orders_2,axiom,
! [A,B] :
( relation_of2(B,A,A)
=> ! [C,D] :
( rel_str_of(A,B) = rel_str_of(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(rc1_orders_2,axiom,
? [A] :
( rel_str(A)
& strict_rel_str(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_orders_2,axiom,
? [A] :
( rel_str(A)
& ~ empty_carrier(A)
& strict_rel_str(A)
& reflexive_relstr(A)
& transitive_relstr(A)
& antisymmetric_relstr(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_struct_0,axiom,
? [A] :
( one_sorted_str(A)
& ~ empty_carrier(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B) ) ) ).
fof(redefinition_k2_lattice3,axiom,
! [A] :
( ( ~ empty_carrier(A)
& lattice(A)
& latt_str(A) )
=> k2_lattice3(A) = relation_of_lattice(A) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
<=> relation_of2(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t28_lattice3,axiom,
! [A,B] :
( ( ~ empty_carrier(B)
& lattice(B)
& latt_str(B) )
=> ! [C] :
( element(C,the_carrier(B))
=> ( latt_set_smaller(B,C,A)
<=> relstr_element_smaller(poset_of_lattice(B),A,cast_to_el_of_LattPOSet(B,C)) ) ) ) ).
fof(t29_lattice3,conjecture,
! [A,B] :
( ( ~ empty_carrier(B)
& lattice(B)
& latt_str(B) )
=> ! [C] :
( element(C,the_carrier(poset_of_lattice(B)))
=> ( relstr_element_smaller(poset_of_lattice(B),A,C)
<=> latt_set_smaller(B,cast_to_el_of_lattice(B,C),A) ) ) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------