TPTP Problem File: SEU340+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU340+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t26_orders_2
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t26_orders_2 [Urb07]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.2.0, 0.42 v8.1.0, 0.36 v7.5.0, 0.41 v7.4.0, 0.30 v7.3.0, 0.38 v7.2.0, 0.34 v7.1.0, 0.30 v7.0.0, 0.33 v6.4.0, 0.35 v6.3.0, 0.33 v6.2.0, 0.48 v6.1.0, 0.53 v6.0.0, 0.48 v5.5.0, 0.56 v5.4.0, 0.57 v5.3.0, 0.63 v5.2.0, 0.35 v5.1.0, 0.43 v5.0.0, 0.54 v4.1.0, 0.57 v4.0.1, 0.52 v4.0.0, 0.54 v3.7.0, 0.50 v3.5.0, 0.58 v3.4.0, 0.53 v3.3.0
% Syntax : Number of formulae : 46 ( 24 unt; 0 def)
% Number of atoms : 91 ( 4 equ)
% Maximal formula atoms : 8 ( 1 avg)
% Number of connectives : 59 ( 14 ~; 1 |; 16 &)
% ( 6 <=>; 22 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 14 ( 12 usr; 1 prp; 0-3 aty)
% Number of functors : 8 ( 8 usr; 1 con; 0-2 aty)
% Number of variables : 75 ( 66 !; 9 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(d5_orders_2,axiom,
! [A] :
( rel_str(A)
=> ( transitive_relstr(A)
<=> is_transitive_in(the_InternalRel(A),the_carrier(A)) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(d8_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_transitive_in(A,B)
<=> ! [C,D,E] :
( ( in(C,B)
& in(D,B)
& in(E,B)
& in(ordered_pair(C,D),A)
& in(ordered_pair(D,E),A) )
=> in(ordered_pair(C,E),A) ) ) ) ).
fof(d9_orders_2,axiom,
! [A] :
( rel_str(A)
=> ! [B] :
( element(B,the_carrier(A))
=> ! [C] :
( element(C,the_carrier(A))
=> ( related(A,B,C)
<=> in(ordered_pair(B,C),the_InternalRel(A)) ) ) ) ) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_l1_orders_2,axiom,
! [A] :
( rel_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> element(C,powerset(cartesian_product2(A,B))) ) ).
fof(dt_u1_orders_2,axiom,
! [A] :
( rel_str(A)
=> relation_of2_as_subset(the_InternalRel(A),the_carrier(A),the_carrier(A)) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : rel_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : relation_of2(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : relation_of2_as_subset(C,A,B) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc2_subset_1,axiom,
! [A] : ~ empty(singleton(A)) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ empty(unordered_pair(A,B)) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
& ~ empty(B) )
=> ~ empty(cartesian_product2(A,B)) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
<=> relation_of2(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t106_zfmisc_1,axiom,
! [A,B,C,D] :
( in(ordered_pair(A,B),cartesian_product2(C,D))
<=> ( in(A,C)
& in(B,D) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t26_orders_2,conjecture,
! [A] :
( ( transitive_relstr(A)
& rel_str(A) )
=> ! [B] :
( element(B,the_carrier(A))
=> ! [C] :
( element(C,the_carrier(A))
=> ! [D] :
( element(D,the_carrier(A))
=> ( ( related(A,B,C)
& related(A,C,D) )
=> related(A,B,D) ) ) ) ) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------