TPTP Problem File: SEU326+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU326+1 : TPTP v9.0.0. Released v3.3.0.
% Domain   : Set theory
% Problem  : MPTP bushy problem t10_tops_2
% Version  : [Urb07] axioms : Especial.
% English  :

% Refs     : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
%          : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb07]
% Names    : bushy-t10_tops_2 [Urb07]

% Status   : Theorem
% Rating   : 0.18 v9.0.0, 0.19 v8.2.0, 0.14 v8.1.0, 0.11 v7.5.0, 0.09 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.17 v6.2.0, 0.16 v6.1.0, 0.13 v6.0.0, 0.04 v5.5.0, 0.11 v5.4.0, 0.14 v5.3.0, 0.19 v5.2.0, 0.05 v5.0.0, 0.08 v4.1.0, 0.13 v4.0.1, 0.17 v4.0.0, 0.21 v3.7.0, 0.15 v3.5.0, 0.16 v3.3.0
% Syntax   : Number of formulae    :   38 (   6 unt;   0 def)
%            Number of atoms       :  121 (   9 equ)
%            Maximal formula atoms :    7 (   3 avg)
%            Number of connectives :   98 (  15   ~;   1   |;  46   &)
%                                         (   1 <=>;  35  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   5 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   16 (  14 usr;   1 prp; 0-2 aty)
%            Number of functors    :    3 (   3 usr;   1 con; 0-2 aty)
%            Number of variables   :   62 (  58   !;   4   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
%            library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( in(A,B)
     => ~ in(B,A) ) ).

fof(cc10_membered,axiom,
    ! [A] :
      ( v1_membered(A)
     => ! [B] :
          ( element(B,A)
         => v1_xcmplx_0(B) ) ) ).

fof(cc11_membered,axiom,
    ! [A] :
      ( v2_membered(A)
     => ! [B] :
          ( element(B,A)
         => ( v1_xcmplx_0(B)
            & v1_xreal_0(B) ) ) ) ).

fof(cc12_membered,axiom,
    ! [A] :
      ( v3_membered(A)
     => ! [B] :
          ( element(B,A)
         => ( v1_xcmplx_0(B)
            & v1_xreal_0(B)
            & v1_rat_1(B) ) ) ) ).

fof(cc13_membered,axiom,
    ! [A] :
      ( v4_membered(A)
     => ! [B] :
          ( element(B,A)
         => ( v1_xcmplx_0(B)
            & v1_xreal_0(B)
            & v1_int_1(B)
            & v1_rat_1(B) ) ) ) ).

fof(cc14_membered,axiom,
    ! [A] :
      ( v5_membered(A)
     => ! [B] :
          ( element(B,A)
         => ( v1_xcmplx_0(B)
            & natural(B)
            & v1_xreal_0(B)
            & v1_int_1(B)
            & v1_rat_1(B) ) ) ) ).

fof(cc15_membered,axiom,
    ! [A] :
      ( empty(A)
     => ( v1_membered(A)
        & v2_membered(A)
        & v3_membered(A)
        & v4_membered(A)
        & v5_membered(A) ) ) ).

fof(cc16_membered,axiom,
    ! [A] :
      ( v1_membered(A)
     => ! [B] :
          ( element(B,powerset(A))
         => v1_membered(B) ) ) ).

fof(cc17_membered,axiom,
    ! [A] :
      ( v2_membered(A)
     => ! [B] :
          ( element(B,powerset(A))
         => ( v1_membered(B)
            & v2_membered(B) ) ) ) ).

fof(cc18_membered,axiom,
    ! [A] :
      ( v3_membered(A)
     => ! [B] :
          ( element(B,powerset(A))
         => ( v1_membered(B)
            & v2_membered(B)
            & v3_membered(B) ) ) ) ).

fof(cc19_membered,axiom,
    ! [A] :
      ( v4_membered(A)
     => ! [B] :
          ( element(B,powerset(A))
         => ( v1_membered(B)
            & v2_membered(B)
            & v3_membered(B)
            & v4_membered(B) ) ) ) ).

fof(cc1_membered,axiom,
    ! [A] :
      ( v5_membered(A)
     => v4_membered(A) ) ).

fof(cc20_membered,axiom,
    ! [A] :
      ( v5_membered(A)
     => ! [B] :
          ( element(B,powerset(A))
         => ( v1_membered(B)
            & v2_membered(B)
            & v3_membered(B)
            & v4_membered(B)
            & v5_membered(B) ) ) ) ).

fof(cc2_membered,axiom,
    ! [A] :
      ( v4_membered(A)
     => v3_membered(A) ) ).

fof(cc3_membered,axiom,
    ! [A] :
      ( v3_membered(A)
     => v2_membered(A) ) ).

fof(cc4_membered,axiom,
    ! [A] :
      ( v2_membered(A)
     => v1_membered(A) ) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k7_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => element(complements_of_subsets(A,B),powerset(powerset(A))) ) ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : element(B,A) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ empty(powerset(A)) ).

fof(fc6_membered,axiom,
    ( empty(empty_set)
    & v1_membered(empty_set)
    & v2_membered(empty_set)
    & v3_membered(empty_set)
    & v4_membered(empty_set)
    & v5_membered(empty_set) ) ).

fof(involutiveness_k7_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => complements_of_subsets(A,complements_of_subsets(A,B)) = B ) ).

fof(rc1_membered,axiom,
    ? [A] :
      ( ~ empty(A)
      & v1_membered(A)
      & v2_membered(A)
      & v3_membered(A)
      & v4_membered(A)
      & v5_membered(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ empty(A)
     => ? [B] :
          ( element(B,powerset(A))
          & ~ empty(B) ) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( element(B,powerset(A))
      & empty(B) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : subset(A,A) ).

fof(t10_tops_2,conjecture,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => ( ~ ( B != empty_set
            & complements_of_subsets(A,B) = empty_set )
        & ~ ( complements_of_subsets(A,B) != empty_set
            & B = empty_set ) ) ) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( in(A,B)
     => element(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( element(A,B)
     => ( empty(B)
        | in(A,B) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( element(A,powerset(B))
    <=> subset(A,B) ) ).

fof(t46_setfam_1,axiom,
    ! [A,B] :
      ( element(B,powerset(powerset(A)))
     => ~ ( B != empty_set
          & complements_of_subsets(A,B) = empty_set ) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( in(A,B)
        & element(B,powerset(C)) )
     => element(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( in(A,B)
        & element(B,powerset(C))
        & empty(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( empty(A)
     => A = empty_set ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( in(A,B)
        & empty(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( empty(A)
        & A != B
        & empty(B) ) ).

%------------------------------------------------------------------------------