TPTP Problem File: SEU325+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU325+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t5_tops_2
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t5_tops_2 [Urb07]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.36 v8.2.0, 0.33 v8.1.0, 0.31 v7.5.0, 0.34 v7.4.0, 0.27 v7.3.0, 0.28 v7.2.0, 0.24 v7.1.0, 0.26 v7.0.0, 0.20 v6.4.0, 0.23 v6.3.0, 0.21 v6.2.0, 0.28 v6.1.0, 0.37 v6.0.0, 0.35 v5.5.0, 0.33 v5.4.0, 0.36 v5.3.0, 0.37 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.29 v4.1.0, 0.35 v4.0.1, 0.30 v4.0.0, 0.33 v3.7.0, 0.30 v3.5.0, 0.32 v3.3.0
% Syntax : Number of formulae : 49 ( 10 unt; 0 def)
% Number of atoms : 146 ( 7 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 115 ( 18 ~; 1 |; 50 &)
% ( 4 <=>; 42 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 19 ( 17 usr; 1 prp; 0-2 aty)
% Number of functors : 6 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 74 ( 66 !; 8 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( element(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& natural(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( empty(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(d3_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> cast_as_carrier_subset(A) = the_carrier(A) ) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = union(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(C,D)
& in(D,A) ) ) ) ).
fof(d8_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> ! [B] :
( element(B,powerset(powerset(the_carrier(A))))
=> ( is_a_cover_of_carrier(A,B)
<=> cast_as_carrier_subset(A) = union_of_subsets(the_carrier(A),B) ) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> element(cast_as_carrier_subset(A),powerset(the_carrier(A))) ) ).
fof(dt_k3_tarski,axiom,
$true ).
fof(dt_k5_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> element(union_of_subsets(A,B),powerset(A)) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ~ empty(the_carrier(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc2_pre_topc,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ~ empty(cast_as_carrier_subset(A)) ) ).
fof(fc6_membered,axiom,
( empty(empty_set)
& v1_membered(empty_set)
& v2_membered(empty_set)
& v3_membered(empty_set)
& v4_membered(empty_set)
& v5_membered(empty_set) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ empty(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( one_sorted_str(A)
& ~ empty_carrier(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& ~ empty(B) ) ) ).
fof(redefinition_k5_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> union_of_subsets(A,B) = union(B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t5_tops_2,conjecture,
! [A] :
( ( ~ empty_carrier(A)
& one_sorted_str(A) )
=> ! [B] :
( element(B,powerset(powerset(the_carrier(A))))
=> ~ ( is_a_cover_of_carrier(A,B)
& B = empty_set ) ) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------