TPTP Problem File: SEU324+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU324+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t55_tops_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t55_tops_1 [Urb07]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.25 v8.2.0, 0.22 v8.1.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.13 v7.3.0, 0.17 v7.2.0, 0.14 v7.1.0, 0.17 v7.0.0, 0.20 v6.4.0, 0.27 v6.3.0, 0.12 v6.2.0, 0.20 v6.1.0, 0.27 v6.0.0, 0.13 v5.5.0, 0.22 v5.4.0, 0.29 v5.3.0, 0.37 v5.2.0, 0.20 v5.1.0, 0.19 v5.0.0, 0.29 v4.1.0, 0.30 v4.0.0, 0.33 v3.7.0, 0.25 v3.5.0, 0.26 v3.4.0, 0.32 v3.3.0
% Syntax : Number of formulae : 25 ( 8 unt; 0 def)
% Number of atoms : 76 ( 6 equ)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 51 ( 0 ~; 0 |; 23 &)
% ( 2 <=>; 26 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 4 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 9 ( 7 usr; 1 prp; 0-2 aty)
% Number of functors : 5 ( 5 usr; 0 con; 1-2 aty)
% Number of variables : 41 ( 35 !; 6 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(d1_tops_1,axiom,
! [A] :
( top_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> interior(A,B) = subset_complement(the_carrier(A),topstr_closure(A,subset_complement(the_carrier(A),B))) ) ) ).
fof(dt_k1_tops_1,axiom,
! [A,B] :
( ( top_str(A)
& element(B,powerset(the_carrier(A))) )
=> element(interior(A,B),powerset(the_carrier(A))) ) ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k3_subset_1,axiom,
! [A,B] :
( element(B,powerset(A))
=> element(subset_complement(A,B),powerset(A)) ) ).
fof(dt_k6_pre_topc,axiom,
! [A,B] :
( ( top_str(A)
& element(B,powerset(the_carrier(A))) )
=> element(topstr_closure(A,B),powerset(the_carrier(A))) ) ).
fof(dt_l1_pre_topc,axiom,
! [A] :
( top_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_pre_topc,axiom,
? [A] : top_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc2_tops_1,axiom,
! [A,B] :
( ( topological_space(A)
& top_str(A)
& element(B,powerset(the_carrier(A))) )
=> closed_subset(topstr_closure(A,B),A) ) ).
fof(fc3_tops_1,axiom,
! [A,B] :
( ( topological_space(A)
& top_str(A)
& closed_subset(B,A)
& element(B,powerset(the_carrier(A))) )
=> open_subset(subset_complement(the_carrier(A),B),A) ) ).
fof(fc4_tops_1,axiom,
! [A,B] :
( ( topological_space(A)
& top_str(A)
& open_subset(B,A)
& element(B,powerset(the_carrier(A))) )
=> closed_subset(subset_complement(the_carrier(A),B),A) ) ).
fof(fc6_tops_1,axiom,
! [A,B] :
( ( topological_space(A)
& top_str(A)
& element(B,powerset(the_carrier(A))) )
=> open_subset(interior(A,B),A) ) ).
fof(involutiveness_k3_subset_1,axiom,
! [A,B] :
( element(B,powerset(A))
=> subset_complement(A,subset_complement(A,B)) = B ) ).
fof(rc1_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& open_subset(B,A) ) ) ).
fof(rc2_tops_1,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& open_subset(B,A)
& closed_subset(B,A) ) ) ).
fof(rc6_pre_topc,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& closed_subset(B,A) ) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t30_tops_1,axiom,
! [A] :
( top_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( open_subset(B,A)
<=> closed_subset(subset_complement(the_carrier(A),B),A) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t52_pre_topc,axiom,
! [A] :
( top_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( ( closed_subset(B,A)
=> topstr_closure(A,B) = B )
& ( ( topological_space(A)
& topstr_closure(A,B) = B )
=> closed_subset(B,A) ) ) ) ) ).
fof(t55_tops_1,conjecture,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ! [B] :
( top_str(B)
=> ! [C] :
( element(C,powerset(the_carrier(A)))
=> ! [D] :
( element(D,powerset(the_carrier(B)))
=> ( ( open_subset(D,B)
=> interior(B,D) = D )
& ( interior(A,C) = C
=> open_subset(C,A) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------