TPTP Problem File: SEU319+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU319+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t29_tops_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t29_tops_1 [Urb07]
% Status : Theorem
% Rating : 0.15 v9.0.0, 0.17 v8.2.0, 0.14 v7.5.0, 0.16 v7.4.0, 0.13 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.17 v6.2.0, 0.16 v6.1.0, 0.23 v6.0.0, 0.17 v5.5.0, 0.19 v5.4.0, 0.25 v5.3.0, 0.30 v5.2.0, 0.15 v5.1.0, 0.14 v5.0.0, 0.17 v4.0.0, 0.21 v3.7.0, 0.15 v3.5.0, 0.11 v3.4.0, 0.26 v3.3.0
% Syntax : Number of formulae : 19 ( 9 unt; 0 def)
% Number of atoms : 36 ( 3 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 17 ( 0 ~; 0 |; 2 &)
% ( 3 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-2 aty)
% Number of functors : 6 ( 6 usr; 0 con; 1-3 aty)
% Number of variables : 26 ( 23 !; 3 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(d6_pre_topc,axiom,
! [A] :
( top_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( closed_subset(B,A)
<=> open_subset(subset_difference(the_carrier(A),cast_as_carrier_subset(A),B),A) ) ) ) ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> element(cast_as_carrier_subset(A),powerset(the_carrier(A))) ) ).
fof(dt_k3_subset_1,axiom,
! [A,B] :
( element(B,powerset(A))
=> element(subset_complement(A,B),powerset(A)) ) ).
fof(dt_k4_xboole_0,axiom,
$true ).
fof(dt_k6_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> element(subset_difference(A,B,C),powerset(A)) ) ).
fof(dt_l1_pre_topc,axiom,
! [A] :
( top_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_pre_topc,axiom,
? [A] : top_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(involutiveness_k3_subset_1,axiom,
! [A,B] :
( element(B,powerset(A))
=> subset_complement(A,subset_complement(A,B)) = B ) ).
fof(redefinition_k6_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> subset_difference(A,B,C) = set_difference(B,C) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t17_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> subset_complement(the_carrier(A),B) = subset_difference(the_carrier(A),cast_as_carrier_subset(A),B) ) ) ).
fof(t29_tops_1,conjecture,
! [A] :
( top_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( closed_subset(B,A)
<=> open_subset(subset_complement(the_carrier(A),B),A) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
%------------------------------------------------------------------------------