TPTP Problem File: SEU312+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU312+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t44_pre_topc
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t44_pre_topc [Urb07]
% Status : Theorem
% Rating : 1.00 v7.0.0, 0.97 v6.4.0, 1.00 v3.3.0
% Syntax : Number of formulae : 92 ( 19 unt; 0 def)
% Number of atoms : 292 ( 24 equ)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 211 ( 11 ~; 1 |; 96 &)
% ( 14 <=>; 89 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 21 ( 19 usr; 1 prp; 0-2 aty)
% Number of functors : 14 ( 14 usr; 1 con; 0-3 aty)
% Number of variables : 164 ( 155 !; 9 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( element(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& natural(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( empty(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(commutativity_k5_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> subset_intersection2(A,B,C) = subset_intersection2(A,C,B) ) ).
fof(d1_pre_topc,axiom,
! [A] :
( top_str(A)
=> ( topological_space(A)
<=> ( in(the_carrier(A),the_topology(A))
& ! [B] :
( element(B,powerset(powerset(the_carrier(A))))
=> ( subset(B,the_topology(A))
=> in(union_of_subsets(the_carrier(A),B),the_topology(A)) ) )
& ! [B] :
( element(B,powerset(the_carrier(A)))
=> ! [C] :
( element(C,powerset(the_carrier(A)))
=> ( ( in(B,the_topology(A))
& in(C,the_topology(A)) )
=> in(subset_intersection2(the_carrier(A),B,C),the_topology(A)) ) ) ) ) ) ) ).
fof(d1_setfam_1,axiom,
! [A,B] :
( ( A != empty_set
=> ( B = set_meet(A)
<=> ! [C] :
( in(C,B)
<=> ! [D] :
( in(D,A)
=> in(C,D) ) ) ) )
& ( A = empty_set
=> ( B = set_meet(A)
<=> B = empty_set ) ) ) ).
fof(d2_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> empty_carrier_subset(A) = empty_set ) ).
fof(d3_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> cast_as_carrier_subset(A) = the_carrier(A) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = union(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(C,D)
& in(D,A) ) ) ) ).
fof(d4_xboole_0,axiom,
! [A,B,C] :
( C = set_difference(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& ~ in(D,B) ) ) ) ).
fof(d5_pre_topc,axiom,
! [A] :
( top_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( open_subset(B,A)
<=> in(B,the_topology(A)) ) ) ) ).
fof(d6_pre_topc,axiom,
! [A] :
( top_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> ( closed_subset(B,A)
<=> open_subset(subset_difference(the_carrier(A),cast_as_carrier_subset(A),B),A) ) ) ) ).
fof(dt_k1_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> element(empty_carrier_subset(A),powerset(the_carrier(A))) ) ).
fof(dt_k1_setfam_1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> element(cast_as_carrier_subset(A),powerset(the_carrier(A))) ) ).
fof(dt_k3_tarski,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k4_xboole_0,axiom,
$true ).
fof(dt_k5_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> element(union_of_subsets(A,B),powerset(A)) ) ).
fof(dt_k5_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> element(subset_intersection2(A,B,C),powerset(A)) ) ).
fof(dt_k6_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> element(meet_of_subsets(A,B),powerset(A)) ) ).
fof(dt_k6_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> element(subset_difference(A,B,C),powerset(A)) ) ).
fof(dt_l1_pre_topc,axiom,
! [A] :
( top_str(A)
=> one_sorted_str(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_pre_topc,axiom,
! [A] :
( top_str(A)
=> element(the_topology(A),powerset(powerset(the_carrier(A)))) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_pre_topc,axiom,
? [A] : top_str(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : one_sorted_str(A) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> ( empty(empty_carrier_subset(A))
& v1_membered(empty_carrier_subset(A))
& v2_membered(empty_carrier_subset(A))
& v3_membered(empty_carrier_subset(A))
& v4_membered(empty_carrier_subset(A))
& v5_membered(empty_carrier_subset(A)) ) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc27_membered,axiom,
! [A,B] :
( v1_membered(A)
=> v1_membered(set_intersection2(A,B)) ) ).
fof(fc28_membered,axiom,
! [A,B] :
( v1_membered(A)
=> v1_membered(set_intersection2(B,A)) ) ).
fof(fc29_membered,axiom,
! [A,B] :
( v2_membered(A)
=> ( v1_membered(set_intersection2(A,B))
& v2_membered(set_intersection2(A,B)) ) ) ).
fof(fc30_membered,axiom,
! [A,B] :
( v2_membered(A)
=> ( v1_membered(set_intersection2(B,A))
& v2_membered(set_intersection2(B,A)) ) ) ).
fof(fc31_membered,axiom,
! [A,B] :
( v3_membered(A)
=> ( v1_membered(set_intersection2(A,B))
& v2_membered(set_intersection2(A,B))
& v3_membered(set_intersection2(A,B)) ) ) ).
fof(fc32_membered,axiom,
! [A,B] :
( v3_membered(A)
=> ( v1_membered(set_intersection2(B,A))
& v2_membered(set_intersection2(B,A))
& v3_membered(set_intersection2(B,A)) ) ) ).
fof(fc33_membered,axiom,
! [A,B] :
( v4_membered(A)
=> ( v1_membered(set_intersection2(A,B))
& v2_membered(set_intersection2(A,B))
& v3_membered(set_intersection2(A,B))
& v4_membered(set_intersection2(A,B)) ) ) ).
fof(fc34_membered,axiom,
! [A,B] :
( v4_membered(A)
=> ( v1_membered(set_intersection2(B,A))
& v2_membered(set_intersection2(B,A))
& v3_membered(set_intersection2(B,A))
& v4_membered(set_intersection2(B,A)) ) ) ).
fof(fc35_membered,axiom,
! [A,B] :
( v5_membered(A)
=> ( v1_membered(set_intersection2(A,B))
& v2_membered(set_intersection2(A,B))
& v3_membered(set_intersection2(A,B))
& v4_membered(set_intersection2(A,B))
& v5_membered(set_intersection2(A,B)) ) ) ).
fof(fc36_membered,axiom,
! [A,B] :
( v5_membered(A)
=> ( v1_membered(set_intersection2(B,A))
& v2_membered(set_intersection2(B,A))
& v3_membered(set_intersection2(B,A))
& v4_membered(set_intersection2(B,A))
& v5_membered(set_intersection2(B,A)) ) ) ).
fof(fc37_membered,axiom,
! [A,B] :
( v1_membered(A)
=> v1_membered(set_difference(A,B)) ) ).
fof(fc38_membered,axiom,
! [A,B] :
( v2_membered(A)
=> ( v1_membered(set_difference(A,B))
& v2_membered(set_difference(A,B)) ) ) ).
fof(fc39_membered,axiom,
! [A,B] :
( v3_membered(A)
=> ( v1_membered(set_difference(A,B))
& v2_membered(set_difference(A,B))
& v3_membered(set_difference(A,B)) ) ) ).
fof(fc40_membered,axiom,
! [A,B] :
( v4_membered(A)
=> ( v1_membered(set_difference(A,B))
& v2_membered(set_difference(A,B))
& v3_membered(set_difference(A,B))
& v4_membered(set_difference(A,B)) ) ) ).
fof(fc41_membered,axiom,
! [A,B] :
( v5_membered(A)
=> ( v1_membered(set_difference(A,B))
& v2_membered(set_difference(A,B))
& v3_membered(set_difference(A,B))
& v4_membered(set_difference(A,B))
& v5_membered(set_difference(A,B)) ) ) ).
fof(fc5_pre_topc,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> closed_subset(cast_as_carrier_subset(A),A) ) ).
fof(fc6_membered,axiom,
( empty(empty_set)
& v1_membered(empty_set)
& v2_membered(empty_set)
& v3_membered(empty_set)
& v4_membered(empty_set)
& v5_membered(empty_set) ) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(idempotence_k5_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> subset_intersection2(A,B,B) = B ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ empty(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc6_pre_topc,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& closed_subset(B,A) ) ) ).
fof(redefinition_k5_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> union_of_subsets(A,B) = union(B) ) ).
fof(redefinition_k5_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> subset_intersection2(A,B,C) = set_intersection2(B,C) ) ).
fof(redefinition_k6_setfam_1,axiom,
! [A,B] :
( element(B,powerset(powerset(A)))
=> meet_of_subsets(A,B) = set_meet(B) ) ).
fof(redefinition_k6_subset_1,axiom,
! [A,B,C] :
( ( element(B,powerset(A))
& element(C,powerset(A)) )
=> subset_difference(A,B,C) = set_difference(B,C) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(s3_subset_1__e2_37_1_1__pre_topc,axiom,
! [A,B] :
( ( topological_space(A)
& top_str(A)
& element(B,powerset(powerset(the_carrier(A)))) )
=> ? [C] :
( element(C,powerset(powerset(the_carrier(A))))
& ! [D] :
( element(D,powerset(the_carrier(A)))
=> ( in(D,C)
<=> in(set_difference(cast_as_carrier_subset(A),D),B) ) ) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t22_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> ! [B] :
( element(B,powerset(the_carrier(A)))
=> subset_difference(the_carrier(A),cast_as_carrier_subset(A),subset_difference(the_carrier(A),cast_as_carrier_subset(A),B)) = B ) ) ).
fof(t2_boole,axiom,
! [A] : set_intersection2(A,empty_set) = empty_set ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
<=> in(C,B) )
=> A = B ) ).
fof(t3_boole,axiom,
! [A] : set_difference(A,empty_set) = A ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t44_pre_topc,conjecture,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ! [B] :
( element(B,powerset(powerset(the_carrier(A))))
=> ( ! [C] :
( element(C,powerset(the_carrier(A)))
=> ( in(C,B)
=> closed_subset(C,A) ) )
=> closed_subset(meet_of_subsets(the_carrier(A),B),A) ) ) ) ).
fof(t4_boole,axiom,
! [A] : set_difference(empty_set,A) = empty_set ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------