TPTP Problem File: SEU311+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU311+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem s3_subset_1__e2_37_1_1__pre_topc
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-s3_subset_1__e2_37_1_1__pre_topc [Urb07]
% Status : Theorem
% Rating : 0.39 v9.0.0, 0.36 v8.1.0, 0.33 v7.5.0, 0.41 v7.4.0, 0.27 v7.3.0, 0.31 v7.2.0, 0.28 v7.1.0, 0.35 v7.0.0, 0.30 v6.4.0, 0.31 v6.3.0, 0.38 v6.2.0, 0.48 v6.1.0, 0.57 v6.0.0, 0.48 v5.5.0, 0.52 v5.4.0, 0.54 v5.3.0, 0.56 v5.2.0, 0.40 v5.1.0, 0.43 v5.0.0, 0.50 v4.1.0, 0.48 v4.0.0, 0.50 v3.5.0, 0.53 v3.4.0, 0.58 v3.3.0
% Syntax : Number of formulae : 46 ( 11 unt; 0 def)
% Number of atoms : 148 ( 2 equ)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 112 ( 10 ~; 0 |; 54 &)
% ( 4 <=>; 44 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 19 ( 17 usr; 1 prp; 0-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 70 ( 61 !; 9 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(s3_subset_1__e2_37_1_1__pre_topc,conjecture,
! [A,B] :
( ( topological_space(A)
& top_str(A)
& element(B,powerset(powerset(the_carrier(A)))) )
=> ? [C] :
( element(C,powerset(powerset(the_carrier(A))))
& ! [D] :
( element(D,powerset(the_carrier(A)))
=> ( in(D,C)
<=> in(set_difference(cast_as_carrier_subset(A),D),B) ) ) ) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ empty(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( element(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( element(B,A)
=> ( v1_xcmplx_0(B)
& natural(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( element(B,powerset(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(fc37_membered,axiom,
! [A,B] :
( v1_membered(A)
=> v1_membered(set_difference(A,B)) ) ).
fof(fc38_membered,axiom,
! [A,B] :
( v2_membered(A)
=> ( v1_membered(set_difference(A,B))
& v2_membered(set_difference(A,B)) ) ) ).
fof(fc39_membered,axiom,
! [A,B] :
( v3_membered(A)
=> ( v1_membered(set_difference(A,B))
& v2_membered(set_difference(A,B))
& v3_membered(set_difference(A,B)) ) ) ).
fof(fc40_membered,axiom,
! [A,B] :
( v4_membered(A)
=> ( v1_membered(set_difference(A,B))
& v2_membered(set_difference(A,B))
& v3_membered(set_difference(A,B))
& v4_membered(set_difference(A,B)) ) ) ).
fof(fc41_membered,axiom,
! [A,B] :
( v5_membered(A)
=> ( v1_membered(set_difference(A,B))
& v2_membered(set_difference(A,B))
& v3_membered(set_difference(A,B))
& v4_membered(set_difference(A,B))
& v5_membered(set_difference(A,B)) ) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(rc6_pre_topc,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> ? [B] :
( element(B,powerset(the_carrier(A)))
& closed_subset(B,A) ) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(cc15_membered,axiom,
! [A] :
( empty(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_pre_topc,axiom,
! [A] :
( one_sorted_str(A)
=> element(cast_as_carrier_subset(A),powerset(the_carrier(A))) ) ).
fof(dt_k4_xboole_0,axiom,
$true ).
fof(dt_l1_pre_topc,axiom,
! [A] :
( top_str(A)
=> one_sorted_str(A) ) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(fc5_pre_topc,axiom,
! [A] :
( ( topological_space(A)
& top_str(A) )
=> closed_subset(cast_as_carrier_subset(A),A) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(s1_xboole_0__e2_37_1_1__pre_topc__1,axiom,
! [A,B] :
( ( topological_space(A)
& top_str(A)
& element(B,powerset(powerset(the_carrier(A)))) )
=> ? [C] :
! [D] :
( in(D,C)
<=> ( in(D,powerset(the_carrier(A)))
& in(set_difference(cast_as_carrier_subset(A),D),B) ) ) ) ).
fof(d2_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
=> ( element(B,A)
<=> in(B,A) ) )
& ( empty(A)
=> ( element(B,A)
<=> empty(B) ) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(l71_subset_1,axiom,
! [A,B] :
( ! [C] :
( in(C,A)
=> in(C,B) )
=> element(A,powerset(B)) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
%------------------------------------------------------------------------------