TPTP Problem File: SEU291+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU291+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t9_funct_2
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t9_funct_2 [Urb07]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.39 v8.2.0, 0.36 v8.1.0, 0.33 v7.5.0, 0.38 v7.4.0, 0.23 v7.3.0, 0.31 v7.1.0, 0.26 v7.0.0, 0.23 v6.4.0, 0.31 v6.3.0, 0.29 v6.2.0, 0.36 v6.1.0, 0.43 v6.0.0, 0.35 v5.5.0, 0.44 v5.4.0, 0.50 v5.3.0, 0.59 v5.2.0, 0.40 v5.1.0, 0.43 v5.0.0, 0.42 v4.1.0, 0.48 v4.0.1, 0.43 v4.0.0, 0.46 v3.7.0, 0.35 v3.5.0, 0.37 v3.4.0, 0.47 v3.3.0
% Syntax : Number of formulae : 52 ( 14 unt; 0 def)
% Number of atoms : 126 ( 12 equ)
% Maximal formula atoms : 9 ( 2 avg)
% Number of connectives : 90 ( 16 ~; 3 |; 42 &)
% ( 4 <=>; 25 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 13 ( 11 usr; 1 prp; 0-3 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-3 aty)
% Number of variables : 84 ( 67 !; 17 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_relat_1,axiom,
! [A] :
( empty(A)
=> relation(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( element(C,powerset(cartesian_product2(A,B)))
=> relation(C) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(d1_funct_2,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> ( ( ( B = empty_set
=> A = empty_set )
=> ( quasi_total(C,A,B)
<=> A = relation_dom_as_subset(A,B,C) ) )
& ( B = empty_set
=> ( A = empty_set
| ( quasi_total(C,A,B)
<=> C = empty_set ) ) ) ) ) ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_relset_1,axiom,
! [A,B,C] :
( relation_of2(C,A,B)
=> element(relation_dom_as_subset(A,B,C),powerset(A)) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
=> element(C,powerset(cartesian_product2(A,B))) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : relation_of2(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : relation_of2_as_subset(C,A,B) ).
fof(fc12_relat_1,axiom,
( empty(empty_set)
& relation(empty_set)
& relation_empty_yielding(empty_set) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ empty(powerset(A)) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc4_relat_1,axiom,
( empty(empty_set)
& relation(empty_set) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ empty(A)
& ~ empty(B) )
=> ~ empty(cartesian_product2(A,B)) ) ).
fof(fc5_relat_1,axiom,
! [A] :
( ( ~ empty(A)
& relation(A) )
=> ~ empty(relation_dom(A)) ) ).
fof(fc7_relat_1,axiom,
! [A] :
( empty(A)
=> ( empty(relation_dom(A))
& relation(relation_dom(A)) ) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_funct_2,axiom,
! [A,B] :
? [C] :
( relation_of2(C,A,B)
& relation(C)
& function(C)
& quasi_total(C,A,B) ) ).
fof(rc1_partfun1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A) ) ).
fof(rc1_relat_1,axiom,
? [A] :
( empty(A)
& relation(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ empty(A)
=> ? [B] :
( element(B,powerset(A))
& ~ empty(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_partfun1,axiom,
! [A,B] :
? [C] :
( relation_of2(C,A,B)
& relation(C)
& function(C) ) ).
fof(rc2_relat_1,axiom,
? [A] :
( ~ empty(A)
& relation(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( element(B,powerset(A))
& empty(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_relat_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(redefinition_k4_relset_1,axiom,
! [A,B,C] :
( relation_of2(C,A,B)
=> relation_dom_as_subset(A,B,C) = relation_dom(C) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( relation_of2_as_subset(C,A,B)
<=> relation_of2(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(t16_relset_1,axiom,
! [A,B,C,D] :
( relation_of2_as_subset(D,C,A)
=> ( subset(A,B)
=> relation_of2_as_subset(D,C,B) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t3_xboole_1,axiom,
! [A] :
( subset(A,empty_set)
=> A = empty_set ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t9_funct_2,conjecture,
! [A,B,C,D] :
( ( function(D)
& quasi_total(D,A,B)
& relation_of2_as_subset(D,A,B) )
=> ( subset(B,C)
=> ( ( B = empty_set
& A != empty_set )
| ( function(D)
& quasi_total(D,A,C)
& relation_of2_as_subset(D,A,C) ) ) ) ) ).
%------------------------------------------------------------------------------