TPTP Problem File: SEU289+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU289+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t28_wellord2
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t28_wellord2 [Urb07]
% Status : CounterSatisfiable
% Rating : 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v3.3.0
% Syntax : Number of formulae : 59 ( 22 unt; 0 def)
% Number of atoms : 184 ( 23 equ)
% Maximal formula atoms : 25 ( 3 avg)
% Number of connectives : 148 ( 23 ~; 1 |; 79 &)
% ( 13 <=>; 32 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 20 ( 18 usr; 1 prp; 0-2 aty)
% Number of functors : 10 ( 10 usr; 1 con; 0-2 aty)
% Number of variables : 107 ( 90 !; 17 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).
fof(d1_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_reflexive_in(A,B)
<=> ! [C] :
( in(C,B)
=> in(ordered_pair(C,C),A) ) ) ) ).
fof(d1_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B,C] :
( C = fiber(A,B)
<=> ! [D] :
( in(D,C)
<=> ( D != B
& in(ordered_pair(D,B),A) ) ) ) ) ).
fof(d3_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_well_founded_in(A,B)
<=> ! [C] :
~ ( subset(C,B)
& C != empty_set
& ! [D] :
~ ( in(D,C)
& disjoint(fiber(A,D),C) ) ) ) ) ).
fof(d3_xboole_0,axiom,
! [A,B,C] :
( C = set_intersection2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
& in(D,B) ) ) ) ).
fof(d4_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_antisymmetric_in(A,B)
<=> ! [C,D] :
( ( in(C,B)
& in(D,B)
& in(ordered_pair(C,D),A)
& in(ordered_pair(D,C),A) )
=> C = D ) ) ) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = union(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(C,D)
& in(D,A) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(d5_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( well_orders(A,B)
<=> ( is_reflexive_in(A,B)
& is_transitive_in(A,B)
& is_antisymmetric_in(A,B)
& is_connected_in(A,B)
& is_well_founded_in(A,B) ) ) ) ).
fof(d6_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_connected_in(A,B)
<=> ! [C,D] :
~ ( in(C,B)
& in(D,B)
& C != D
& ~ in(ordered_pair(C,D),A)
& ~ in(ordered_pair(D,C),A) ) ) ) ).
fof(d7_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
<=> set_intersection2(A,B) = empty_set ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_wellord1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k3_tarski,axiom,
$true ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc4_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(union(A))
& epsilon_connected(union(A))
& ordinal(union(A)) ) ) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : set_intersection2(A,A) = A ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(s2_funct_1__e10_24__wellord2,axiom,
! [A,B] :
( ( ~ empty(A)
& relation(B) )
=> ( ( ! [C,D,E] :
( ( in(C,A)
& ? [F] :
( C = F
& in(D,F)
& ! [G] :
( in(G,F)
=> in(ordered_pair(D,G),B) ) )
& ? [H] :
( C = H
& in(E,H)
& ! [I] :
( in(I,H)
=> in(ordered_pair(E,I),B) ) ) )
=> D = E )
& ! [C] :
~ ( in(C,A)
& ! [D] :
~ ? [J] :
( C = J
& in(D,J)
& ! [K] :
( in(K,J)
=> in(ordered_pair(D,K),B) ) ) ) )
=> ? [C] :
( relation(C)
& function(C)
& relation_dom(C) = A
& ! [D] :
( in(D,A)
=> ? [L] :
( D = L
& in(apply(C,D),L)
& ! [M] :
( in(M,L)
=> in(ordered_pair(apply(C,D),M),B) ) ) ) ) ) ) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( disjoint(A,B)
=> disjoint(B,A) ) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t26_wellord2,axiom,
! [A] :
? [B] :
( relation(B)
& well_orders(B,A) ) ).
fof(t28_wellord2,conjecture,
! [A] :
( ~ empty(A)
=> ~ ( ! [B] :
~ ( in(B,A)
& B = empty_set )
& ! [B] :
( ( relation(B)
& function(B) )
=> ~ ( relation_dom(B) = A
& ! [C] :
( in(C,A)
=> in(apply(B,C),C) ) ) ) ) ) ).
fof(t2_boole,axiom,
! [A] : set_intersection2(A,empty_set) = empty_set ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t92_zfmisc_1,axiom,
! [A,B] :
( in(A,B)
=> subset(A,union(B)) ) ).
%------------------------------------------------------------------------------