TPTP Problem File: SEU286+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU286+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem s1_xboole_0__e4_5_1__funct_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-s1_xboole_0__e4_5_1__funct_1 [Urb07]
% Status : Theorem
% Rating : 0.79 v9.0.0, 0.78 v8.1.0, 0.75 v7.5.0, 0.84 v7.4.0, 0.70 v7.3.0, 0.69 v7.1.0, 0.70 v6.4.0, 0.69 v6.3.0, 0.71 v6.2.0, 0.76 v6.1.0, 0.83 v5.5.0, 0.85 v5.4.0, 0.86 v5.3.0, 0.93 v5.2.0, 0.90 v5.1.0, 0.95 v5.0.0, 0.96 v4.1.0, 0.91 v4.0.1, 0.96 v4.0.0, 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v3.4.0, 0.95 v3.3.0
% Syntax : Number of formulae : 19 ( 5 unt; 0 def)
% Number of atoms : 83 ( 12 equ)
% Maximal formula atoms : 26 ( 4 avg)
% Number of connectives : 70 ( 6 ~; 0 |; 48 &)
% ( 2 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 10 ( 8 usr; 1 prp; 0-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 2-2 aty)
% Number of variables : 47 ( 24 !; 23 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(s1_xboole_0__e10_24__wellord2__1,conjecture,
! [A,B] :
( ( ~ empty(A)
& relation(B) )
=> ! [C] :
? [D] :
! [E] :
( in(E,D)
<=> ( in(E,cartesian_product2(A,C))
& ? [F,G] :
( ordered_pair(F,G) = E
& in(F,A)
& ? [H] :
( F = H
& in(G,H)
& ! [I] :
( in(I,H)
=> in(ordered_pair(G,I),B) ) ) ) ) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(s1_tarski__e10_24__wellord2__2,axiom,
! [A,B] :
( ( ~ empty(A)
& relation(B) )
=> ! [C] :
( ! [D,E,F] :
( ( D = E
& ? [G,H] :
( ordered_pair(G,H) = E
& in(G,A)
& ? [I] :
( G = I
& in(H,I)
& ! [J] :
( in(J,I)
=> in(ordered_pair(H,J),B) ) ) )
& D = F
& ? [K,L] :
( ordered_pair(K,L) = F
& in(K,A)
& ? [M] :
( K = M
& in(L,M)
& ! [N] :
( in(N,M)
=> in(ordered_pair(L,N),B) ) ) ) )
=> E = F )
=> ? [D] :
! [E] :
( in(E,D)
<=> ? [F] :
( in(F,cartesian_product2(A,C))
& F = E
& ? [O,P] :
( ordered_pair(O,P) = E
& in(O,A)
& ? [Q] :
( O = Q
& in(P,Q)
& ! [R] :
( in(R,Q)
=> in(ordered_pair(P,R),B) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------