TPTP Problem File: SEU281+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU281+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem s1_xboole_0__e4_5_1__funct_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-s1_xboole_0__e4_5_1__funct_1 [Urb07]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.36 v8.2.0, 0.31 v8.1.0, 0.33 v7.5.0, 0.38 v7.4.0, 0.20 v7.3.0, 0.24 v7.2.0, 0.21 v7.1.0, 0.26 v7.0.0, 0.23 v6.4.0, 0.35 v6.3.0, 0.29 v6.2.0, 0.44 v6.1.0, 0.43 v6.0.0, 0.35 v5.5.0, 0.48 v5.4.0, 0.46 v5.3.0, 0.52 v5.2.0, 0.35 v5.1.0, 0.38 v5.0.0, 0.46 v4.1.0, 0.48 v4.0.0, 0.46 v3.7.0, 0.45 v3.5.0, 0.53 v3.4.0, 0.47 v3.3.0
% Syntax : Number of formulae : 15 ( 6 unt; 0 def)
% Number of atoms : 47 ( 12 equ)
% Maximal formula atoms : 15 ( 3 avg)
% Number of connectives : 36 ( 4 ~; 0 |; 23 &)
% ( 2 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 32 ( 17 !; 15 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(s1_xboole_0__e16_22__wellord2__1,conjecture,
! [A,B] :
? [C] :
! [D] :
( in(D,C)
<=> ( in(D,cartesian_product2(A,B))
& ? [E,F] :
( ordered_pair(E,F) = D
& in(E,A)
& F = singleton(E) ) ) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(s1_tarski__e16_22__wellord2__2,axiom,
! [A,B] :
( ! [C,D,E] :
( ( C = D
& ? [F,G] :
( ordered_pair(F,G) = D
& in(F,A)
& G = singleton(F) )
& C = E
& ? [H,I] :
( ordered_pair(H,I) = E
& in(H,A)
& I = singleton(H) ) )
=> D = E )
=> ? [C] :
! [D] :
( in(D,C)
<=> ? [E] :
( in(E,cartesian_product2(A,B))
& E = D
& ? [J,K] :
( ordered_pair(J,K) = D
& in(J,A)
& K = singleton(J) ) ) ) ) ).
%------------------------------------------------------------------------------