TPTP Problem File: SEU280+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU280+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem s1_xboole_0__e6_22__wellord2
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-s1_xboole_0__e6_22__wellord2 [Urb07]
% Status : Theorem
% Rating : 0.18 v9.0.0, 0.19 v7.5.0, 0.22 v7.4.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.09 v7.0.0, 0.07 v6.4.0, 0.12 v6.2.0, 0.16 v6.1.0, 0.20 v6.0.0, 0.17 v5.5.0, 0.19 v5.4.0, 0.21 v5.3.0, 0.30 v5.2.0, 0.10 v5.0.0, 0.12 v4.1.0, 0.13 v4.0.0, 0.17 v3.7.0, 0.14 v3.5.0, 0.00 v3.4.0, 0.08 v3.3.0
% Syntax : Number of formulae : 6 ( 0 unt; 0 def)
% Number of atoms : 23 ( 4 equ)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 18 ( 1 ~; 0 |; 10 &)
% ( 2 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 15 ( 11 !; 4 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(s1_xboole_0__e6_22__wellord2,conjecture,
! [A] :
? [B] :
! [C] :
( in(C,B)
<=> ( in(C,A)
& ordinal(C) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(s1_tarski__e6_22__wellord2__1,axiom,
! [A] :
( ! [B,C,D] :
( ( B = C
& ordinal(C)
& B = D
& ordinal(D) )
=> C = D )
=> ? [B] :
! [C] :
( in(C,B)
<=> ? [D] :
( in(D,A)
& D = C
& ordinal(C) ) ) ) ).
%------------------------------------------------------------------------------