TPTP Problem File: SEU279+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU279+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem l30_wellord2
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-l30_wellord2 [Urb07]
% Status : Theorem
% Rating : 1.00 v5.0.0, 0.96 v3.7.0, 0.90 v3.5.0, 0.95 v3.3.0
% Syntax : Number of formulae : 68 ( 23 unt; 0 def)
% Number of atoms : 199 ( 18 equ)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 145 ( 14 ~; 2 |; 69 &)
% ( 20 <=>; 40 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 24 ( 22 usr; 1 prp; 0-3 aty)
% Number of functors : 11 ( 11 usr; 1 con; 0-2 aty)
% Number of variables : 113 ( 98 !; 15 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : unordered_pair(A,B) = unordered_pair(B,A) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : set_union2(A,B) = set_union2(B,A) ).
fof(d10_xboole_0,axiom,
! [A,B] :
( A = B
<=> ( subset(A,B)
& subset(B,A) ) ) ).
fof(d1_relat_2,axiom,
! [A] :
( relation(A)
=> ! [B] :
( is_reflexive_in(A,B)
<=> ! [C] :
( in(C,B)
=> in(ordered_pair(C,C),A) ) ) ) ).
fof(d2_xboole_0,axiom,
! [A,B,C] :
( C = set_union2(A,B)
<=> ! [D] :
( in(D,C)
<=> ( in(D,A)
| in(D,B) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( subset(A,B)
<=> ! [C] :
( in(C,A)
=> in(C,B) ) ) ).
fof(d4_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( B = relation_dom(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] : in(ordered_pair(C,D),A) ) ) ) ).
fof(d4_wellord1,axiom,
! [A] :
( relation(A)
=> ( well_ordering(A)
<=> ( reflexive(A)
& transitive(A)
& antisymmetric(A)
& connected(A)
& well_founded_relation(A) ) ) ) ).
fof(d4_wellord2,axiom,
! [A,B] :
( equipotent(A,B)
<=> ? [C] :
( relation(C)
& function(C)
& one_to_one(C)
& relation_dom(C) = A
& relation_rng(C) = B ) ) ).
fof(d5_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ! [B] :
( B = relation_rng(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] :
( in(D,relation_dom(A))
& C = apply(A,D) ) ) ) ) ).
fof(d5_relat_1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( B = relation_rng(A)
<=> ! [C] :
( in(C,B)
<=> ? [D] : in(ordered_pair(D,C),A) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : ordered_pair(A,B) = unordered_pair(unordered_pair(A,B),singleton(A)) ).
fof(d6_relat_1,axiom,
! [A] :
( relation(A)
=> relation_field(A) = set_union2(relation_dom(A),relation_rng(A)) ) ).
fof(d7_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( relation_isomorphism(A,B,C)
<=> ( relation_dom(C) = relation_field(A)
& relation_rng(C) = relation_field(B)
& one_to_one(C)
& ! [D,E] :
( in(ordered_pair(D,E),A)
<=> ( in(D,relation_field(A))
& in(E,relation_field(A))
& in(ordered_pair(apply(C,D),apply(C,E)),B) ) ) ) ) ) ) ) ).
fof(d9_relat_2,axiom,
! [A] :
( relation(A)
=> ( reflexive(A)
<=> is_reflexive_in(A,relation_field(A)) ) ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_funct_1,axiom,
! [A] :
( ( relation(A)
& function(A) )
=> ( relation(function_inverse(A))
& function(function_inverse(A)) ) ) ).
fof(dt_k2_relat_1,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(dt_k3_relat_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(fc2_ordinal1,axiom,
( relation(empty_set)
& relation_empty_yielding(empty_set)
& function(empty_set)
& one_to_one(empty_set)
& empty(empty_set)
& epsilon_transitive(empty_set)
& epsilon_connected(empty_set)
& ordinal(empty_set) ) ).
fof(fc2_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(A,B)) ) ).
fof(fc3_xboole_0,axiom,
! [A,B] :
( ~ empty(A)
=> ~ empty(set_union2(B,A)) ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : set_union2(A,A) = A ).
fof(l30_wellord2,conjecture,
! [A,B] :
( relation(B)
=> ~ ( well_ordering(B)
& equipotent(A,relation_field(B))
& ! [C] :
( relation(C)
=> ~ well_orders(C,A) ) ) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc4_funct_1,axiom,
? [A] :
( relation(A)
& relation_empty_yielding(A)
& function(A) ) ).
fof(redefinition_r2_wellord2,axiom,
! [A,B] :
( equipotent(A,B)
<=> are_equipotent(A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : subset(A,A) ).
fof(reflexivity_r2_wellord2,axiom,
! [A,B] : equipotent(A,A) ).
fof(s1_relat_1__e6_21__wellord2,axiom,
! [A,B,C] :
( ( relation(B)
& relation(C)
& function(C) )
=> ? [D] :
( relation(D)
& ! [E,F] :
( in(ordered_pair(E,F),D)
<=> ( in(E,A)
& in(F,A)
& in(ordered_pair(apply(C,E),apply(C,F)),B) ) ) ) ) ).
fof(symmetry_r2_wellord2,axiom,
! [A,B] :
( equipotent(A,B)
=> equipotent(B,A) ) ).
fof(t1_boole,axiom,
! [A] : set_union2(A,empty_set) = A ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(t30_relat_1,axiom,
! [A,B,C] :
( relation(C)
=> ( in(ordered_pair(A,B),C)
=> ( in(A,relation_field(C))
& in(B,relation_field(C)) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( element(A,powerset(B))
<=> subset(A,B) ) ).
fof(t49_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( relation_isomorphism(A,B,C)
=> relation_isomorphism(B,A,function_inverse(C)) ) ) ) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( in(A,B)
& element(B,powerset(C)) )
=> element(A,C) ) ).
fof(t54_wellord1,axiom,
! [A] :
( relation(A)
=> ! [B] :
( relation(B)
=> ! [C] :
( ( relation(C)
& function(C) )
=> ( ( well_ordering(A)
& relation_isomorphism(A,B,C) )
=> well_ordering(B) ) ) ) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( in(A,B)
& element(B,powerset(C))
& empty(C) ) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(t8_wellord1,axiom,
! [A] :
( relation(A)
=> ( well_orders(A,relation_field(A))
<=> well_ordering(A) ) ) ).
%------------------------------------------------------------------------------