TPTP Problem File: SEU277+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU277+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem s1_xboole_0__e1_8_1_1__relat_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-s1_xboole_0__e1_8_1_1__relat_1 [Urb07]
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.47 v8.2.0, 0.44 v7.5.0, 0.47 v7.4.0, 0.30 v7.3.0, 0.34 v7.2.0, 0.31 v7.1.0, 0.39 v7.0.0, 0.37 v6.4.0, 0.38 v6.3.0, 0.46 v6.2.0, 0.48 v6.1.0, 0.60 v6.0.0, 0.52 v5.5.0, 0.56 v5.4.0, 0.57 v5.3.0, 0.59 v5.2.0, 0.40 v5.1.0, 0.43 v5.0.0, 0.50 v4.1.0, 0.48 v4.0.1, 0.57 v4.0.0, 0.62 v3.7.0, 0.55 v3.5.0, 0.63 v3.4.0, 0.58 v3.3.0
% Syntax : Number of formulae : 20 ( 6 unt; 0 def)
% Number of atoms : 70 ( 8 equ)
% Maximal formula atoms : 15 ( 3 avg)
% Number of connectives : 54 ( 4 ~; 0 |; 38 &)
% ( 2 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 10 ( 8 usr; 1 prp; 0-2 aty)
% Number of functors : 3 ( 3 usr; 0 con; 2-2 aty)
% Number of variables : 39 ( 20 !; 19 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(s1_xboole_0__e6_21__wellord2__1,conjecture,
! [A,B,C] :
( ( relation(B)
& relation(C)
& function(C) )
=> ? [D] :
! [E] :
( in(E,D)
<=> ( in(E,cartesian_product2(A,A))
& ? [F,G] :
( E = ordered_pair(F,G)
& in(ordered_pair(apply(C,F),apply(C,G)),B) ) ) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A) ) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc2_ordinal1,axiom,
? [A] :
( relation(A)
& function(A)
& one_to_one(A)
& empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( relation(A)
& empty(A)
& function(A) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( relation(A)
& empty(A)
& function(A) )
=> ( relation(A)
& function(A)
& one_to_one(A) ) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(rc1_funct_1,axiom,
? [A] :
( relation(A)
& function(A) ) ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(s1_tarski__e6_21__wellord2__1,axiom,
! [A,B,C] :
( ( relation(B)
& relation(C)
& function(C) )
=> ( ! [D,E,F] :
( ( D = E
& ? [G,H] :
( E = ordered_pair(G,H)
& in(ordered_pair(apply(C,G),apply(C,H)),B) )
& D = F
& ? [I,J] :
( F = ordered_pair(I,J)
& in(ordered_pair(apply(C,I),apply(C,J)),B) ) )
=> E = F )
=> ? [D] :
! [E] :
( in(E,D)
<=> ? [F] :
( in(F,cartesian_product2(A,A))
& F = E
& ? [K,L] :
( E = ordered_pair(K,L)
& in(ordered_pair(apply(C,K),apply(C,L)),B) ) ) ) ) ) ).
%------------------------------------------------------------------------------