TPTP Problem File: SEU275+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU275+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t7_wellord2
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t7_wellord2 [Urb07]
% Status : Theorem
% Rating : 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v5.0.0, 0.05 v4.1.0, 0.00 v3.3.0
% Syntax : Number of formulae : 11 ( 4 unt; 0 def)
% Number of atoms : 26 ( 0 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 15 ( 0 ~; 0 |; 8 &)
% ( 1 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 10 ( 10 usr; 0 prp; 1-1 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 11 ( 10 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(d4_wellord1,axiom,
! [A] :
( relation(A)
=> ( well_ordering(A)
<=> ( reflexive(A)
& transitive(A)
& antisymmetric(A)
& connected(A)
& well_founded_relation(A) ) ) ) ).
fof(dt_k1_wellord2,axiom,
! [A] : relation(inclusion_relation(A)) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(t2_wellord2,axiom,
! [A] : reflexive(inclusion_relation(A)) ).
fof(t3_wellord2,axiom,
! [A] : transitive(inclusion_relation(A)) ).
fof(t4_wellord2,axiom,
! [A] :
( ordinal(A)
=> connected(inclusion_relation(A)) ) ).
fof(t5_wellord2,axiom,
! [A] : antisymmetric(inclusion_relation(A)) ).
fof(t6_wellord2,axiom,
! [A] :
( ordinal(A)
=> well_founded_relation(inclusion_relation(A)) ) ).
fof(t7_wellord2,conjecture,
! [A] :
( ordinal(A)
=> well_ordering(inclusion_relation(A)) ) ).
%------------------------------------------------------------------------------