TPTP Problem File: SEU272+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU272+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem s1_xboole_0__e3_38_1__ordinal1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-s1_xboole_0__e3_38_1__ordinal1 [Urb07]
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.47 v8.1.0, 0.44 v7.5.0, 0.56 v7.4.0, 0.43 v7.3.0, 0.34 v7.2.0, 0.31 v7.1.0, 0.39 v7.0.0, 0.40 v6.4.0, 0.42 v6.3.0, 0.46 v6.2.0, 0.52 v6.1.0, 0.60 v6.0.0, 0.57 v5.5.0, 0.59 v5.4.0, 0.61 v5.3.0, 0.63 v5.2.0, 0.45 v5.1.0, 0.43 v5.0.0, 0.46 v4.1.0, 0.48 v4.0.1, 0.52 v4.0.0, 0.54 v3.7.0, 0.60 v3.5.0, 0.58 v3.4.0, 0.63 v3.3.0
% Syntax : Number of formulae : 14 ( 4 unt; 0 def)
% Number of atoms : 52 ( 8 equ)
% Maximal formula atoms : 16 ( 3 avg)
% Number of connectives : 43 ( 5 ~; 0 |; 26 &)
% ( 2 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 28 ( 17 !; 11 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(s1_xboole_0__e8_6__wellord2__1,conjecture,
! [A,B] :
( ordinal(B)
=> ? [C] :
! [D] :
( in(D,C)
<=> ( in(D,succ(B))
& ? [E] :
( ordinal(E)
& D = E
& in(E,A) ) ) ) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( empty(A)
=> function(A) ) ).
fof(cc2_ordinal1,axiom,
! [A] :
( ( epsilon_transitive(A)
& epsilon_connected(A) )
=> ordinal(A) ) ).
fof(rc1_ordinal1,axiom,
? [A] :
( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(cc3_ordinal1,axiom,
! [A] :
( empty(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ) ).
fof(rc3_ordinal1,axiom,
? [A] :
( ~ empty(A)
& epsilon_transitive(A)
& epsilon_connected(A)
& ordinal(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(dt_k1_ordinal1,axiom,
$true ).
fof(fc1_ordinal1,axiom,
! [A] : ~ empty(succ(A)) ).
fof(cc1_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( epsilon_transitive(A)
& epsilon_connected(A) ) ) ).
fof(fc3_ordinal1,axiom,
! [A] :
( ordinal(A)
=> ( ~ empty(succ(A))
& epsilon_transitive(succ(A))
& epsilon_connected(succ(A))
& ordinal(succ(A)) ) ) ).
fof(s1_tarski__e8_6__wellord2__1,axiom,
! [A,B] :
( ordinal(B)
=> ( ! [C,D,E] :
( ( C = D
& ? [F] :
( ordinal(F)
& D = F
& in(F,A) )
& C = E
& ? [G] :
( ordinal(G)
& E = G
& in(G,A) ) )
=> D = E )
=> ? [C] :
! [D] :
( in(D,C)
<=> ? [E] :
( in(E,succ(B))
& E = D
& ? [H] :
( ordinal(H)
& D = H
& in(H,A) ) ) ) ) ) ).
%------------------------------------------------------------------------------