TPTP Problem File: SEU267+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU267+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Set theory
% Problem : MPTP bushy problem t7_mcart_1
% Version : [Urb07] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek et al. (2001), On the Characterizations of Co
% : [Urb07] Urban (2006), Email to G. Sutcliffe
% Source : [Urb07]
% Names : bushy-t7_mcart_1 [Urb07]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.14 v8.1.0, 0.11 v7.5.0, 0.12 v7.4.0, 0.10 v7.1.0, 0.13 v7.0.0, 0.07 v6.4.0, 0.12 v6.3.0, 0.08 v6.2.0, 0.16 v6.1.0, 0.17 v6.0.0, 0.22 v5.5.0, 0.15 v5.4.0, 0.18 v5.3.0, 0.22 v5.2.0, 0.10 v5.0.0, 0.12 v4.1.0, 0.13 v4.0.1, 0.17 v4.0.0, 0.21 v3.7.0, 0.15 v3.5.0, 0.16 v3.3.0
% Syntax : Number of formulae : 19 ( 10 unt; 0 def)
% Number of atoms : 34 ( 12 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 21 ( 6 ~; 1 |; 4 &)
% ( 2 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 3 usr; 1 prp; 0-2 aty)
% Number of functors : 4 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 31 ( 24 !; 7 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Translated by MPTP 0.2 from the original problem in the Mizar
% library, www.mizar.org
%------------------------------------------------------------------------------
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : element(B,A) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(t2_subset,axiom,
! [A,B] :
( element(A,B)
=> ( empty(B)
| in(A,B) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( in(A,B)
=> ~ in(B,A) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(fc1_xboole_0,axiom,
empty(empty_set) ).
fof(t1_subset,axiom,
! [A,B] :
( in(A,B)
=> element(A,B) ) ).
fof(rc1_xboole_0,axiom,
? [A] : empty(A) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ empty(A) ).
fof(t6_boole,axiom,
! [A] :
( empty(A)
=> A = empty_set ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( in(A,B)
& empty(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( empty(A)
& A != B
& empty(B) ) ).
fof(dt_k1_mcart_1,axiom,
$true ).
fof(dt_k2_mcart_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(fc1_zfmisc_1,axiom,
! [A,B] : ~ empty(ordered_pair(A,B)) ).
fof(t7_mcart_1,conjecture,
! [A,B] :
( pair_first(ordered_pair(A,B)) = A
& pair_second(ordered_pair(A,B)) = B ) ).
fof(d1_mcart_1,axiom,
! [A] :
( ? [B,C] : A = ordered_pair(B,C)
=> ! [B] :
( B = pair_first(A)
<=> ! [C,D] :
( A = ordered_pair(C,D)
=> B = C ) ) ) ).
fof(d2_mcart_1,axiom,
! [A] :
( ? [B,C] : A = ordered_pair(B,C)
=> ! [B] :
( B = pair_second(A)
<=> ! [C,D] :
( A = ordered_pair(C,D)
=> B = D ) ) ) ).
%------------------------------------------------------------------------------